
14th European LS-DYNA Conference 2023, Baden-Baden, Germany

An Interprocess Communication based Integration
of AI User Materials into LS-DYNA

Joachim Sprave1, Tobias Erhart2, André Haufe2

1Mercedes-Benz AG, 059-L423, D-71032 Böblingen, Germany
2DYNAmore GmbH, Industriestrasse 2, D-70565 Stuttgart, Germany

Machine Learning (ML) driven material models have been investigated for some time now. The
respective ML models can be trained outside of the Finite Element solvers by means of given
strain paths and corresponding stress results which have either been recorded from simulations,
drawn from distributions, or even measured from hardware tests. The trained models can be easily
evaluated regarding their performance based on an-other set of strain paths with results that have
not been presented to the model during training. When a model has reached a promising prediction
accuracy on the validation data, the natural next step is to test it in a finite element simulation
by integrating the trained model as a user material. Unfortunately, coupling ML models trained
by established AI frameworks, such as TensorFlow or PyTorch, is not a trivial task. Solvers are
typically stand-alone programs written in a compiled language such as Fortran or C/C++. For
LS-DYNA, there are three canonical ways to use trained ML material models as user materials:
Reimplementation as a user material subroutine (UMAT) in Fortran or C/C++, linking LS-DYNA with
an existing framework, and interprocess communication (IPC) with an external ML model. In this
work we present an IPC UMAT for LS-DYNA on Unix-like systems. A dummy UMAT is provided that
handles the communication, as well as boilerplate code in Python that serves as a wrapper to call a
trained model for each integration point or batch of integration points, mimicking the logic of simple
and vectorized UMATs in Fortran. Examples are given how to use Keras, PyTorch, and Scikit-learn
models.

1 Material Models using Machine Learning Models

Today, material models for state-of-the-art finite element solvers are built on a solid base of decades
of research in continuum mechanics. Most material models and their parameters are being devel-
oped in a highly optimized, mostly standardized process, with standardized hardware tests, stan-
dardized measurement methods, and standardized software tools. Still, this takes time and only
works for materials that are not too far away from known materials with respect to their mechan-
ical properties and deformation behavior. The final result of this calibration process is a piece of
code and respective parameters. For LS-DYNA, this would be a Fortran subroutine that implements
a function which, in the simplest case for incremental metallic materials, computes from a stress
tensor, a strain tensor, and some history variables an updated stress tensor and updated history
variables. Formally this can be written as f : R12+nhv → R6+nhv where nvh is the number of history
variables. Note that in LS-DYNA, effective plastic strain is treated separately from other history
variables.

Since material models are just multi-variate real functions, they can be as well treated as black
boxes and learned by data-driven algorithms. Although it is beyond the scope of this publication
to discuss the details of data-driven constitutive models, two reasons to create these models are
mentioned here: Firstly, when a new material enters the market, often there are no established and
trusted constitutive models available. Deriving such a model from hardware tests only can deliver
a first and rough material model. Hence, often a full understanding and hence the representation
of the mechanical properties and behavior of this material is not possible. Secondly, data-driven
models based on Neural Networks (NN) are suited for specialized hardware as for instance GPUs
and can be faster in execution during simulations. If just speed is the objective, AI material models
may be trained from data generated using existing constitutive models, e.g. [4]. For new materials,

c©2023 Copyright by DYNAmore GmbH, an Ansys Company



14th European LS-DYNA Conference 2023, Baden-Baden, Germany

no existing material models could be available to generate such data. In this case, the training
data must be extracted from hardware tests. This is especially challenging because the most
significant output of material models, namely the stresses, cannot be measured from tests directly.
An approach to overcome this problem can be found in [3].

2 Coupling LS-DYNA with ML Frameworks

For simple ML models, reimplementation of the models as user defined materials in a finite element
code can be an option. Feedforward neural networks, for example, consist of matrix multiplications
and non-linear activations functions only. When the weights are given as result of a training outside
of LS-DYNA, an inference model that serves as a user material can be easily implemented. But
when it comes to more sophisticated ML models, such as convolutional neural networks, recurrent
neural networks, or the most recent achievement in sequence modelling, so called transformers, the
models used in the training can become very large and very complex. In this case reimplementation
is time-consuming and error-prone. It is still hard to beat performance-wise, so this is probably the
way to go for models which finally go into production releases. However, for developing and testing,
and optimizing models, a more flexible workflow is required.

Lightweight Linkable Libraries

Technically, the most obvious way to couple LS-DYNA with an ML framework or library is linking
the ML code to the LS-DYNA binaries, either statically or as modules. This requires the ML code to
be Fortran-friendly, meaning that it is already written in Fortran, e.g. [2, 5] or in another compiled
language such as C or C++, e.g. [6] that can be easily linked to Fortran code. In this case one can
simply call the trained models from an otherwise empty user material subroutine. Hence the ML
model is part of the solver, so one receives the full performance of the framework. On the other
hand, the ML code shares the address space with the solver, meaning that the correctness and
stability of the simulation depends on the combined binaries. Still, if the trained models accuracy is
sufficient, this approach can deliver a performance compared to individually coded models.

Bridging to State-Of-The-Art Machine Leaning Frameworks

Instead of relatively light-weight libraries which can be linked to LS-DYNA directly, it is also possible
to couple full-featured state-of-the-art frameworks by means of bridging. Bridging means that there
is some code that translates the ML frameworks API to Fortran calls. Examples for bridges are the
Fortran-Keras-Bridge (FKB) [8] for Keras/TensorFlow, or PyTorch Fortran bindings [1] for PyTorch.
These bridges require a careful setup and a matching version of the ML framework. Linking against
a code monster like LS-DYNA also has its pitfalls. But once the setup works, one can use most
– in case of FKB – or – with the PyTorch Fortran Bindings – all of the layer types available in the
framework. The models can be trained with full support of tools that have been developed in the
ML domain.

Interprocess communication (IPC)

A dummy UMAT forks a process that communicates with a process written in a scripting language
such as Python. Within the Python script, arbitrary frameworks can be used, including, but not re-
stricted to, PyTorch, TensorFlow, and Scikit-Learn. One can even write traditional material models
based on continuum mechanics and test them without recompiling and relinking LS-DYNA. Com-
pared to linking and bridging, this approach is hopelessly bad regarding performance. On the other
hand, a trained model as well as a hand-written material model can be made available for LS-DYNA
simulations in a couple of minutes.

3 pipespy: An IPC-UMAT Suite for LS-DYNA

In LS-DYNA, user materials are Fortran subroutines which are being linked to the main solver
either statically or dynamically. In any case, when the solver runs it calls a user material as a
subroutine inside of its address space. In order to use an ML model instead of a classical code

c©2023 Copyright by DYNAmore GmbH, an Ansys Company



14th European LS-DYNA Conference 2023, Baden-Baden, Germany

based constitutive law, the UMAT serves as a converter and dispatcher. Data received from the LS-
DYNA main program, like strain increments and history variables, must be filtered and converted
into a data format that can be processed by the linked ML model. The results coming back from
the ML model must then be converted into the format expected as output from user materials,
i.e. updates stresses and history variables. In case of bridging with an ML framework, LS-DYNA, the

Figure 1: Essential control flow for a user material in LS-DYNA. The main program calls a subroutine (here: umat47v)
passing strain increments, the current stress tensor, the history variables, and other information, e.g. time step, material
constants etc. for a batch of integration points to the called subroutine. The material model subroutine returns the stress
tensors for the next time step and updated history variables.

bridging software, and the ML framework must be linked together into a single executable. While the
PyTorch Fortran bindings [1] make use of a PyTorch runtime library, thereby providing the complete
functionality of PyTorch, the Fortran-Keras-Bridge (FKB) translates Keras trained models to neural-
fortran [5]. This means that FKB is limited to network architectures and layer types implemented
in neural-fortran. LS-DYNA and the ML framework share the same address space. In contrast,

Figure 2: Essential control flow for an ML user material using bridging. After optionally filtering and scaling the data, the
material model passes its input data to the bridge. The bridge routine then passes the data to the actual ML material model
which has be trained outside of LS-DYNA, and returns the model’s response to the user material which again returns it to the
main program in a proper format, i.e. as stresses and history variables. Since everything is linked to a common executable
program, there is no parallelism involved.

an IPC coupling of LS-DYNA with Python requires only a dummy user material that handles the
communcation. When this is available, anything that can be invoked by a Python function can
serve as a material model. This means especially that users do not have to worry about compilers,
linkers, makefiles etc.

4 LS-DYNA Integration of the IPC Interface

The development of the actual IPC material model presented here was initially started in the public
funded project AIAX [7] and has been further development in the project AIMM (Artificial Intelligence
for Materials Modelling, see Acknowledgements). As of now, this software is a proof of concept
within the project consortium and will not be part of an official release.

c©2023 Copyright by DYNAmore GmbH, an Ansys Company



14th European LS-DYNA Conference 2023, Baden-Baden, Germany

Figure 3: Essential control flow for a user material in LS-DYNA using interprocess communication. After optionally filtering
and scaling the data, the user material subroutine writes its inputs into an IPC channel – here: an anonymous pipe – and
listens to a corresponding return channel until the results have been delivered. On the other end of the pipes, a separate
Python process performs an endless loop listening on the first pipe, processing the data, and writing results to the second
pipe.

5 Example: Linear-Elastic Material Model in Python

Boilerplate Code

On the Python side, the pipespy suite provides the pipespy.py code that handles the communication,
and a simple template called predict.py as boilerplate code for developing Python material models.
The heart of the code in Listing 1 is the apply function that instantiates a DynaIPC object, and then
goes into an endless communication loop. For most Python materials models, only the predict

function must be replaced by code calculating a material model. In this chapter, an example is
shown that implements a linear-elastic material model in Python and makes it available in LS-DYNA
by means of interprocess communication.

1 import sys

2 import numpy as np

3 from pipespy import DynaIPC

4

5 def predict(Xin):

6 # your material model code goes here

7 # result = [sigmas , plastic strains , histvars] for solids

8 # result = [sigmas , thickness strain , plastic strains , histvars] for shells

9 return result

10

11 def apply(n_histvar):

12 sys.stderr.write(" ------- UMAT IPC Interface (Python): waiting for data\n")

13 sys.stderr.write(f" ------- UMAT IPC Interface (Python): {n_histvar} histvars\n")

14 ipc = DynaIPC ()

15

16 while True:

17 X0 = ipc.get_batch () # get a batch of data from DYNA

18 outputs = predict(X0) # calculate the answer of the material model

19 ipc.put_batch(outputs) # return sigmas to DYNA

20

21 def main():

22 apply(int(sys.argv [1]))

23

24 if __name__ == ’__main__ ’:

25 main()

Listing 1: Boilerplate code for a solid material model using pipespy. For shells, the thickness strain is expected as an
additional return value. In the apply function, a DynaIPC object is created that handles all the commucation. Besides
providing methods to receive and send batches of data, it also provides members tt, ipt, and idevels, holding the current
simulation time, integration point, and the list of element IDs from the last call.

MAT001 Python Equivalent

While the interface presented here was developed with ML models in mind, it can also be seen as
a playground to develop material models in Python. A simple Hookean material law, for example,
consists of just a couple of lines of code in Python, as shown in Listing 2.

c©2023 Copyright by DYNAmore GmbH, an Ansys Company



14th European LS-DYNA Conference 2023, Baden-Baden, Germany

1 emod = 70.0

2 rnue = 0.30

3 gmod = emod /(2.*(1.+ rnue))

4 bkmod = emod /(3.*(1. -2.* rnue))

5

6 def mat001(umat_input_vector):

7 sig123 = umat_input_vector [:3]

8 sig456 = umat_input_vector [3:6]

9 d123 = umat_input_vector [6:9]

10 d456 = umat_input_vector [9:12]

11 epsvol= np.sum(d123)/3.

12 dpress = 3.0* bkmod*epsvol

13 sig123 = sig123 + dpress + 2.0* gmod*(d123 -epsvol)

14 sig456 = sig456+gmod*d456

15 return np.array([sig123 ,sig456 ]).flatten ()

Listing 2: A linear-elastic material model written in Python. It is assumed that matrices and vectors are numpy arrays. For
the sake of readability, this code has not been optimized. This can be used instead of a Neural Network to test the interface.

For the sake of efficiency, the IPC user material of pipespy has been implemented as a vectorized
UMAT. Hence the data sent to Python is a batch of UMAT inputs for a certain number of integration
points. The example in Listing 2 could be further optimized to handle these batches in parallel. To
keep this example simple, we just call the mat001 routine in a loop for each integration point and
concatenate the results, as shown in Listing 3.

1 def predictHook(Xin):

2 Yout = []

3 for row in Xin:

4 Yout.append(predict_single(row))

5 zero_plstrain = np.zeros([len(Yout) ,1])

6 return np.hstack ([Yout , zero_plstrain ])

Listing 3: Wrapper function to loop over a batch of integration points. Since pipespy always expects effective plastic strain
updates, a column of zeros is added to the result.

Now it is easy to integrate this material model into the boilerplate code in Listing 1. We simply
replace the predict function by the code from Listings 2 and 3.

Running the MAT001 Example

With the Python part of the example developed in the previous section, there are two missing
pieces in the puzzle: Adding an IPC UMAT to a keyword file, and, finally, running a simulation. The
keyword file entry is a typical MAT USER DEFINED MATERIAL MODELS card. Density, Poisson’s ratio,
Young’s modulus, as well as bulk and shear moduli are required by LS-DYNA for step size control
and contact handling. The material number (mt) calls UMAT 47 that should contain the IPC specific
calls. The number of history variables nhv must match the respective Python implementation. The
width of the array X0 in line 17 of Listing 1 is 13+nhv1.

1 *MAT_USER_DEFINED_MATERIAL_MODELS

2 $ mid ro mt lmc nhv iortho ibulk ig

3 1027.85000E-6 47 10 0 0 9 10

4 $ ivect ifail itherm ihyper ieos

5 1 0 0 0 0 0

6 $ emod rnue crv/tble eppf eppfr

7 70.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

8 $ bulk g

9 58.4 26.9 0.0 0.0 0.0 0.0 0.0 0.0

10 $

11 *PART

12 $# title

13 Cantilever

14 $# pid secid mid eosid hgid grav adpopt tmid

15 1 1 102 0 0 0 0 0

Listing 4: User material card for the IPC UMAT. While the material ID (here: 102) can be chosen arbitrarily by the user,
the material model number mt is hard-coded to 47 in this proof of concept. ivect must be 1 because the IPC UMAT is
implemented as a vectorized model. The number of history variable nhv must be set according to the amount of data
processed by the Python code. Be aware that currently, this is not being checked internally and the user must take care of
the correct numbers for nhv.

113 = 6 stresses, 6 strain increments, 1 plastic strain

c©2023 Copyright by DYNAmore GmbH, an Ansys Company



14th European LS-DYNA Conference 2023, Baden-Baden, Germany

Before starting a simulation, two environment variables must be set to inform the LS-DYNA module
about the IPC details. The first variable is called AIAX PYTHON and must be set to the path of the
Python interpreter to be used. This can be a system-wide install interpreter as well as one from
a The second variable AIAX SCRIPT must be set to the path of the Python script that contains the
actual model. This script should be based on the the boierplate code in Listing 1.

1 AIAX_PYTHON=env/bin/python3

2 export AIAX_PYTHON

3 AIAX_SCRIPT=predict_hook.py

4 export AIAX_SCRIPT

5 mpirun ls-dyna_mpp_d_R12_platformmpi_sharelib i=Cantilever.key

Listing 5: Setting the environment variables for pipespy in a bash shell and running LS-DYNA. Note that pipespy is currently
implemented as a module for the MPI version of LS-DYNA. For the present proof of concept, a special executable fpr
LS-DYNA is required (see line no. 5).

If everything is setup correctly, LS-DYNA reports the successful negotiation between the solver and
pipespy, as shown in Figure 4.

Figure 4: Output from a run of LS-DYNA with a pipespy IPC UMAT.

6 Summary and Outlook

A material model interface for LS-DYNA has been introduced that allows the integration of arbitrary
Python code as material models. Although it has been developed for testing data-driven models
trained using state-of-the-art AI frameworks, it can also be used to write and test conventional
material models in Python, e.g. for educational purposes. While it is clear that this interface cannot
compete with conventional user materials w.r.t. execution speed, it has not been investigated how
it compares to other approaches. This will be subject of further research.

Acknowledgements

The contributions of Joachim Sprave and André Haufe were supported by the Federal Ministry
for Economic Affairs and Climate Action (BMWK) due to an enactment of the German Bundestag
under Grant No. 19I20024 within the project AIMM (Artificial Intelligence for Materials Modelling).

c©2023 Copyright by DYNAmore GmbH, an Ansys Company



14th European LS-DYNA Conference 2023, Baden-Baden, Germany

References

[1] Dmitry Alexeev. Pytorch fortran bindings. https://github.com/alexeedm/pytorch-fortran, 2022.

[2] Javier Bernal and Jose Torres-Jimenez. Sagrad: A program for neural network training with
simulated annealing and the conjugate gradient method, 2015-06-17 2015.

[3] Pauline Böhringer, Daniel Sommer, Thomas Haase, Martin Barteczko, Joachim Sprave, Markus
Stoll, Celalettin Karadogan, David Koch, Peter Middendorf, and Mathias Liewald. A strategy to
train machine learning material models for finite element simulations on data acquirable from
physical experiments. Computer Methods in Applied Mechanics and Engineering, 406:115894,
2023.

[4] Colin Bonatti and Dirk Mohr. One for all: Universal material model based on minimal state-space
neural networks. Science Advances, 7(26):eabf3658, 2021.

[5] Milan Curcic. A parallel fortran framework for neural networks and deep learning, 2019.

[6] Ryan R. Curtin, Marcus Edel, Omar Shrit, Shubham Agrawal, Suryoday Basak, James J. Bala-
muta, Ryan Birmingham, Kartik Dutt, Dirk Eddelbuettel, Rishabh Garg, Shikhar Jaiswal, Aakash
Kaushik, Sangyeon Kim, Anjishnu Mukherjee, Nanubala Gnana Sai, Nippun Sharma, Yash-
want Singh Parihar, Roshan Swain, and Conrad Sanderson. mlpack 4: a fast, header-only c++
machine learning library. Journal of Open Source Software, 8(82):5026, 2023.

[7] Sarah Eberhard, Said Jamei, Joachim Sprave, Norbert Dölle, Steven Peters, Carmen Maria
Krahe, Alexander Jacob, Tom Stähr, Fabio Echsler Minguillon, Constantin Hofmann, Leonard
Overbeck, Louis Schäfer, Magnus Kandler, Gisela Lanza, Milan Marinov, Henrik Oppermann,
Nicolas Schönborn, Jawad Tayyub, Volker Frey, David Koch, André Haufe, Thanh Binh Bui,
Paul-Ludwig Winkler, and Klaus-Robert Müller. Verbundprojekt aiax: Machine-learning-driven
engineering - cax goes aiax : gemeinsamer schlussbericht zum verbundprojekt : Laufzeit vom
01.08.2018 bis 31.07.2021. Technical report, Mercedes-Benz AG , Wbk Institut für Produktion-
stechnik , USU-Software AG , Endress+Hauser GmbH+Co. , DYNAmore GmbH , Technische
Universität Berlin, Institut für Softwaretechnik und Theoretische Informatik, Stuttgart, 2021.

[8] Jordan Ott, Mike Pritchard, Natalie Best, Erik Linstead, Milan Curcic, and Pierre Baldi. A fortran-
keras deep learning bridge for scientific computing, 2020.

c©2023 Copyright by DYNAmore GmbH, an Ansys Company


