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1 Introduction 

Novelis is a world leader in aluminium flat rolled products and a major supplier to the beverage can-
making industry. As such, Novelis is deeply involved in supporting the can-making industry to help 
shaping a more sustainable future together. Reducing the amount of metal used for each beverage can 
is a major driver for improving sustainability of the beverage can packaging, thus Novelis is actively 
investigating and developing state of the art modelling tools and approaches to support further 
optimization of the beverage can. 
In this work, a proof of concept for applying machine learning approaches to the field of can body 
analysis and optimization is investigated. The aim of the work is to determine the feasibility of training a 
machine learning system on a data-set of can body forming and performance simulations to carry out 
real-time predictions of can performance and formability indicators. Leveraging a set of previously 
developed Novelis’ finite element models of the can body forming and performance testing processes, 
the full set of relevant can body geometry, forming process and material properties is parametrized in 
order to facilitate automated model generation. With this set of parametrized models, a large number of 
finite element model simulations is carried out by varying the parameters within a reasonably large range 
to generate a data-set of approximately 1500 unique can simulation variants. Finally, a machine learning 
model is trained on the data and used as a surrogate model to provide predictions of can performance. 
The quality of the fit is evaluated, and a limited number of predictions are validated against un-seen 
data. Validation is carried out against real-world can body performance data and a comparison between 
the test data, FEA simulation data and machine learning predictions is carried out. 
 

2 Training data generation 

Training data is generated by running parametric variations of finite element simulations of the can body 
forming process and can body performance test. These simulations represent the relevant stages of the 
can body forming process and select performance test which were of interest in this work. The forming 
stages considered here include: 

- Cup drawing 
- Re-draw and bottom forming, 
- Re-forming, 

and the performance tests: 
- Dome reversal pressure, 
- Axial buckle load. 

 
These models are collected in an automated simulation workflow, schematically shown in Fig. 1. 

 

Fig.1: Can forming and performance simulation workflow. 
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2.1 Forming process 

Cup drawing is a cylindrical deep drawing operation, in which a circular blank is cut out of a sheet of 
metal, held between a die and a blank holder, and a cylindrical punch draws a cup in a single downwards 
stroke. 
In the second operation, the cup is re-drawn to a smaller diameter, representing the diameter of the final 
can body, and the bottom of the can is formed against the bottom forming tooling in a single stroke. The 
cup is held by a re-draw sleeve against a re-draw die in the initial stage and a cylindrical punch draws 
the material through the tooling. In the real-life process, the side-wall of the cup is extended in the axial 
direction by passing the material through several ironing rings, reducing its thickness against the punch 
and elongating the side-wall. This step is omitted in the simulation as it was found to have little influence 
on the final performance of the bottom of the can. Finally, at the bottom of the stroke, the dome and 
outer chime of the can body are formed. 
Following the re-draw step, the cans undergo an internal lacquering process and an external decoration 
process, followed by a washing process. The internal lacquer serves as a barrier layer between the 
beverage and the aluminium can material whereas the external lacquer mostly serves decorative 
purposes. In order to cure the applied coatings and dry the cans after the washer, the cans undergo 
several thermal cycles at temperatures exceeding 200°C. This causes work hardening recovery in the 
highly cold-worked metal and reduces the yield strength of the material by a significant amount. 
Re-forming is an additional forming operation used to improve the pressurization performance of the 
bottom of the can body. It is an incremental roll-forming operation where a roller, or a set of rollers, rotate 
eccentrically to further re-form the legs of the centre dome towards a concave shape, which is otherwise 
not possible in the drawing operation. The final cross-section shape of the bottom of the can is shown 
on Fig. 2 below: 

 

Fig.2: Can bottom geometry and nomenclature. 

 

2.2 Performance evaluation 

The can body has to withstand several different loading conditions to be considered fit-for-purpose. 
Particularly for carbonated beverages, the pressure stability of the can is of utmost importance, this is 
in turn evaluated by the dome reversal test, where the finished can body is internally pressurized until 
the dome at the bottom of can reverses (Fig. 3). A typical internal pressure requirement for a beverage 
can body is 6.2 bar (90 psi).  

a.)  b.)  

Fig.3: Can body bottom a.) before, and b.) after dome reversal (simulation). 

 
Several forming processes (not discussed in this work), vertical stacking of un-filled can bodies and the 
filling process itself require the can to withstand significant axial load. A typical requirement for axial load 
is 1 kN. The test involves placing the can body between two rigid plates and applying a compressive 



14th European LS-DYNA Conference 2023, Baden-Baden, Germany 
 

 

 
© 2023 Copyright by DYNAmore GmbH, an Ansys Company 

load along the axial direction until the can buckles. The peak load is considered the axial buckle load of 
the can body. The can body exhibits two distinct modes of axial buckle: 

- Side-wall buckle, 
- Bottom squat. 

 
In side-wall buckle, the cylindrical wall of the can buckles in a stochastic manner, making it a highly 
perturbation dependant phenomenon. Bottom squat occurs if the side-wall is sufficiently strong to shift 
the buckling mechanism onto the bottom of the can body, which then buckles axi-symmetrically. In this 
work, only the bottom squat failure mode is considered (Fig. 4). 

 
a.) 

 
b.) 

Fig.4: Bottom squat failure mode. 

 

2.3 Modelling approach 

An axisymmetric modelling approach is adopted to accelerate calculation time. The can body geometry 
is nominally axisymmetric, excluding any material anisotropy effects or process variations, which are 
neglected in this work. 
 
In all cases, the forming tools are considered rigid and a penalty contact is prescribed between the tools 
and the can body. Fully integrated axisymmetric volume weighted elements are used (shell element 
type 15, number of integration points equal to 4) for the deformable can body. Five elements through 
the thickness and an average element size of approximately 0.25 mm in the radial direction are used. 
The rigid tools are modelled using volume weighted 2D axisymmetric shell elements (beam element 
type 8). 
 
Fig. 5 shows the 2D axisymmetric cup forming simulation. The draw die is fixed in space and a constant 
load is applied to the draw-holder. The punch has a prescribed motion boundary condition. 

 

Fig.5: Close-up view of the cup forming simulation during the downward stroke. 



14th European LS-DYNA Conference 2023, Baden-Baden, Germany 
 

 

 
© 2023 Copyright by DYNAmore GmbH, an Ansys Company 

 

The results from one forming stage simulation are transferred to the subsequent step by using a 
*INTERFACE_SPRINGBACK_LSDYNA keyword and by including the resulting dynain fine in the input 

deck. 
The re-draw simulation is shown in Fig. 6-a.) below, the re-draw die and the dome plug are fixed in 
space, and the re-draw sleeve is assigned a constant clamping load. The punch has a prescribed motion 
boundary condition. The outer retainer is assigned a constant load in the upwards direction, and is held 
in place using the *CONSTRAINED_RIGID_BODY_STOPPERS keyword. 

The re-forming simulation (Fig. 6-b.)) consists of a receptacle, fixed in space and a re-form wheel which 
moves radially by prescribed motion to simulate eccentric motion of the real-life process. Nodes on the 
top of the can side-wall are prescribed a constant load, to prevent the can body from moving in the 
receptacle. 

 
a.) 

 
b1.) 
 
 
 
 

 
b2.) 

Fig.6: FEA simulation models of a.) the re-draw and bottom forming simulation and b.) re-forming 
process. 

 

2.4 Constitutive model and hardening law 

In order to ensure consistent material properties between the 2D axisymmetric and 3D shell element 
models, the Von Mises yield locus is used. The hardening behaviour of the aluminium alloy is described 
using an exponential equation: 

𝜎𝑌(𝜀𝑝𝑙) = 𝐵 + (𝐴 + 𝐾 ∙ 𝜀𝑝𝑙) [1 − 𝑒−
𝑐

𝐴
𝜀𝑝𝑙], (1) 

where: 
A … amount of hardening 
B … initial yield stress 
K … slope of linear region 
c … shape coefficient 
 
This has been found to represent the stress-strain behaviour of can body material well and gives good 
results in the simulations. 
To simulate the softening of the material during recovery in the thermal processing of the can body, two 
separate flow curves are defined, one for the as-rolled material and one of the material after thermal 
exposure (Fig. 7). The material properties are changed in the spring-back simulation step following the 
re-draw simulation. This is a crude approximation of the material properties evolution from a 
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metallurgical standpoint, but it captures the reduction of the mechanical properties of the can body 
sufficiently well. 

 

Fig.7: Flow curves of the as-rolled and softened material. 

 

2.5 Parametric decomposition of the FEA model 

In order to enable automated generation of the can body forming models and an automated workflow 
execution, a fully parametric description of the can body forming process is established. This includes 
parametric descriptions of the: 

- Forming tool geometries, 
- Process parameters, 
- Material properties. 

 
It is important for the performance of the machine learning model that all the parameters are fully 
independent of each other and that they describe the entire process uniquely. This is particularly true of 
the tooling geometries, which, in turn, determine the final can body geometry. An example of one such 
decomposition is shown on Fig. 8 for the dome plug, the re-draw punch, the outer retainer and the re-
forming tooling. 
Using the exponential equation described in chapter 2.4, the material properties can be fully described 
by: 

- Yield stress, 
- Ultimate tensile strength, 
- Uniform elongation, 
- Slope of the hardening curve, 
- Amount of softening during thermal treatment. 

 
Process parameters include: 

- Dome depth, 
- Re-form diameter, 
- Re-form height, 
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In total, the entire can body forming process is described by 26 variable parameters. 
 

 
a.) 

 
b.) 

 
c.) 

 
d.) 

Fig.8: Parametric description of the can forming tooling geometry, a.) dome plug, b.) re-draw 
punch, c.) outer retainer and d.) re-draw looing. 

 

2.6 Dataset generation 

The data-set is generated by varying all the input parameters in a random manner between a minimum 
and maximum value. Approximately 1500 unique sets of parameters were evaluated. The entire set of 
forming and performance models is executed for each parameter set. A subset of the minimum and 
maximum bounds assigned to the parameters is shown in Table 1. 

Parameter Min. Max. 

Gauge [mm] 0.200 0.300 

Yield strength [MPa] 240.0 320.0 

Can outer diameter [mm] 55.0 70.0 

Can stand diameter [mm] 42.0 54.0 

Dome Depth [mm] 8.0 15.0 

Table 1: Select data-set minimum and maximum parameter bounds. 

An automated post processing routine is established, which evaluates 7 performance metrics: 
- Dome reversal pressure before re-forming, 
- Dome reversal pressure after re-forming, 
- Axial buckle load (bottom squat), 
- Metal mass, 
- Liquid volume, 
- Maximum thinning before re-forming, 
- Maximum thinning after re-forming. 
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Metal mass and liquid volume are calculated to a height of 15 mm above the lowest point of the can 
body, to provide a consistent means of comparing different bottom geometries. 
From the point of view of the machine learning model, the input parameters represent the features, and 
the performance parameters represent the targets. 
 

3 Machine learning model 

The machine learning model used is a Gradient boosting regressor. It is trained on the 7 performance 
metrics from the simulation process and the 26 input parameters. The dataset was split into a train set 
and a test set with a 75:25 split ratio. 
The machine learning model training shows good results with all mean average error within acceptable 
bounds (Fig. 9). A level of over-fitting is present, however, the prediction accuracy is acceptable. 

 
a.) 

 
b.) 

 
c.) 

 
d.) 

 
e.) 

 

 
f.) 

 
g.) 

 

Fig.9: Correlation plots between FEA simulation results and the machine learning predictions for the 
train and test data-sets, a.) dome reversal pressure before re-forming, b.) dome reversal 
pressure after re-forming, c.) axial buckle load, d.) metal mass, e.) liquid volume, f.) thinning 
before re-forming, and g.) thinning after re-forming. 
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4 Results and validation 

To validate the machine learning results, validations tests were carried out at the Novelis Global R&D 
Centre, Kennesaw, GA, USA. Different can body design were formed on a laboratory scale can 
production line with variating settings of the reformer and dome depth. In this initial validation stage, only 
the dome reversal pressure tests were carried out. The forming was varied in such a way, as to achieve 
variations of the final can body geometry in the following parameters (Fig 10.): 

 

Fig.10: Can bottom geometrical parameters.  

The forming parameters used in the validation are shown in Table 2, along with their minimum and 
maximum bounds where applicable: 

Parameter Min. Max. 

Dome Depth [mm] 10.54 11.61 

Reform Diameter [mm] 45.95  47.14 

Reform Height [mm] 2.18 2.39 

Gauge [mm] 0.260 

Yield strength [MPa] 253.7 

Table 2: Validation test forming parameters. 

The results of the machine learning model predictions, compared to the finite element model simulation 
results and the physical test data for various combinations of dome depth and re-forming set-up are 
shown in Fig. 11 and 12 below. 

 
a.) 

 
b.) 

Fig.11: FEA simulation and machine learning predictions of dome reversal pressure for a.) an un re-
formed can body at different dome depts and b.) different re-formed diameters at a dome depth 
10.54 mm and a re-form height of 2.39 mm. 

 
Fig. 11-a.) shows the comparison of dome reversal pressure results for an un re-formed can body at 
two different dome depths. The machine learning model captures the relative performance change well, 
however, it over-predicts the absolute measured value by between 3.4 and 4.2 %. 
Fig. 11-b.) shows the dome reversal pressure results for a re-formed can body at a dome depth of 10.54 
mm with a re-from height of 2.39 mm. In this case, the machine learning model under-predicts the dome 
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reversal pressure significantly, by 6.8 % at the lower re-form diameter. The finite element model itself 
show a poor agreement with the results and the machine learning model follows that trend at a lower 
absolute level. 

 
a.) 

 
b.) 

Fig.12: FEA simulation and machine learning predictions of dome reversal pressure for a re-formed 
can body at a dome depth of 11.61 mm and a.) a re-form height of 2.18 mm, b.) a re-form 
height of 2.39 mm. 

 
Fig. 12 shows the dome reversal pressure results at a dome depth of 11.61 mm for two different re-form 
heights as a function of re-from diameter. In both cases, the machine learning model follows the trends 
of the finite element model better than those of the physical experiment, particularly at the higher re-
from diameters, and significantly under-predicts the dome reversal pressure. The error rises with re-
from diameter and is at its highest at approximately 6.9 % on Fig. 12-a.) at a re-from diameter of 47.14 
mm. The shortcomings of the finite element model are also visible and follow the trend shown in Fig. 
11-b.). 
Possibly, there are physical phenomena present in the forming process at higher re-from diameters, 
which the underlying finite element model does not capture with sufficient accuracy. The machine 
learning model predictions diverge most from the finite element simulation results at higher re-from 
diameters, indicating that those effects might be captured better at other points in the data-set.  
 

5 Summary  

A methodology was developed for predicting performance parameters of a formed beverage can body 
using a machine learning approach. The can body forming process has been parametrized and a set of 
finite element models developed to simulate the can body forming and performance testing. These 
models have been used in a high-throughput simulation approach, to generate a large training data-set 
to train a gradient boosting regressor machine learning model. The machine model is in-turn used to 
provide real-time predictions of can body performance. 
The machine learning model has been validated in a limited way on predictions of dome reversal 
pressure performance and has shown acceptable accuracy to provide useful data for engineering 
applications. The relative error of the machine learning predictions is below approximately 7 %, however, 
the trends observed in the physical experiment are preserved, i.e. the relative change in performance 
from one variant to another is captured well by the machine learning model, in some cases even better 
so than the finite element simulation by itself. 
In its current state, the accuracy of the machine learning model is sufficient to perform non-critical 
analyses, such as initial screening of test variants, design space exploration or on-site troubleshooting, 
where the speed of prediction is more relevant than the absolute accuracy of the results. 
In further work, the size of the data-set will be continuously grown to provide more training data for the 
machine learning model. Additionally, the inaccuracies of the finite element model at high re-form 
diameters need to be addressed. 
 


