Modeling composite materials with respect to reinforcement textile construction
To address the ongoing efforts to virtually design complex composite materials and their high-perfor-mance structures and to contribute to the increasing developments towards Industry 4.0, research and development of fiber-reinforced composites is shifting from an experimental domain to a virtually con-trolled environment. Material models to account for the specific failure mechanisms of layered fiber-reinforced materials have been developed and can be used for largescale numerical structural simula-tions. However, these models do not account for the individual properties of the reinforcing materials and therefore lack information on microstructural effects and behavior.
https://www.dynalook.com/conferences/14th-european-ls-dyna-conference-2023/composites-textiles/doebrich_zhaw.pdf/view
https://www.dynalook.com/@@site-logo/DYNAlook-Logo480x80.png
Modeling composite materials with respect to reinforcement textile construction
To address the ongoing efforts to virtually design complex composite materials and their high-perfor-mance structures and to contribute to the increasing developments towards Industry 4.0, research and development of fiber-reinforced composites is shifting from an experimental domain to a virtually con-trolled environment. Material models to account for the specific failure mechanisms of layered fiber-reinforced materials have been developed and can be used for largescale numerical structural simula-tions. However, these models do not account for the individual properties of the reinforcing materials and therefore lack information on microstructural effects and behavior.