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1 Abstract 

In numerous mechanical engineering applications, the use of multiscale computational modeling and 
simulations is imperative. Nevertheless, the computational challenge persists in addressing complex 
multiscale systems due to the vast dimensionality of the solution space. The field of machine learning 
(ML) has experienced ongoing development as a feasible option that might potentially expedite, 
substitute, or complement traditional numerical techniques. Recent studies have demonstrated that 
(ML) has the capability to effectively address a range of differential equations, including boundary 
value problems, while maintaining a desirable balance between accuracy and computing complexity. 
The present study is centered on the finite element simulation of batteries, with a particular emphasis 
on the modeling of battery cells. The primary objective of this study is to develop a comprehensive 
finite element (FE) model of a battery cell that accurately simulates the physical characteristics and 
microstructural behavior observed in real-world battery cells. The incorporation of micro-structural cell 
response into full-scale models is frequently acknowledged as a challenging and time-intensive 
undertaking. The desire for the development of computationally inexpensive models is driven by the 
inefficiency of combining intricate models into bigger simulation models. This paper presents a novel 
approach that utilizes large-scale datasets and ML techniques to develop a multiscale strategy. In this 
study, a comprehensive dataset of simulations is generated at the micro-scale through the 
development of a detailed FE model. The simulations are conducted using the LS-DYNA software 
suite, incorporating the idea of Representative Volume Elements (RVE) for homogenization purposes. 
Subsequently, the collected data is employed for the purpose of training a ML-based surrogate model. 
Ultimately, this surrogate model has the potential to be integrated with LS-DYNA through an UMAT 
(User Material Subroutine). Consequently, it can be incorporated in subsequent endeavors involving 
battery modeling and simulations. 

2 Introduction 

The continuous progress in the field of Automobiles suggests that Electromobility is poised to become 
an essential component of the energy mix in the foreseeable future.  It is imperative to consistently 
contribute to the rapidly expanding sector of electric vehicles. Taking into consideration the 
aforementioned point, the project "DIGItalization for SusTAINability (DigiTain)" has been initiated by 
the Bundesministerium für Wirtschaft und Klimaschutz (BMWK). The objective of this project is to 
establish diverse processes, methods, and models for the complete digitalization of product 
development in the context of sustainable electric vehicle architectures. The present research work is 
a component of the DigiTain project and is driven by the fundamental concepts and principles that 
underpin the project. 

2.1 Motivation 

The developments in battery technology have necessitated the development of robust methodologies 
for battery testing, thus driving progress in battery modelling and simulations. Considering this, it is 
imperative to use a scale-bridging methodology to effectively establish a connection between these 
disparate scales, hence optimizing the outcomes of the computational battery model. While multiscale 
simulation methods have demonstrated their efficacy in precisely modelling complicated systems, they 
are characterized by their high computing expense, significant time requirements, and challenging 
implementation process. However, attempts can be made to solve the limitations by the utilization of 
advanced solutions offered by the field of ML. ML is an academic discipline that emerged because of 
the pursuit of artificial intelligence (AI). The concept of allowing computers to acquire knowledge from 
data during the nascent phases of the academic discipline of AI piqued the interest of certain scholars. 
The utilization of Neural Networks in conjunction with the multiscale modelling methodology can yield 
optimal outcomes by combining the strengths of both methodologies.  
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Therefore, the primary objective of this study is to construct a surrogate model that can serve as a 
valuable instrument for including the scale bridging phenomenon into conventional battery simulations. 

2.2 State of the Art 

The crashworthiness simulation of a battery pack can be carried out using an explicit FE code like LS-
DYNA to analyze the effect of materials and thickness on the strength of the battery [1]. Due to the 
involvement of different length scales, numerical simulations of heterogeneous systems like battery 
modules for electric vehicles are very difficult. It is impossible to reproduce the collision scenario of the 
entire vehicle while resolving all length scales, even with the most advanced computing equipment. 
These obstacles makes it a bit difficult to comprehend the mechanical response of battery packs in car 
crash scenarios. The problem of multiple length scales can be resolved using the RVE technique 
which is based on the classical homogenization theory [2]. Although these methods provide results 
with exceptional accuracy, they are still computationally very expensive and so, it is necessary to 
further accelerate the RVE analysis using advanced ML and model reduction techniques in order to 
pave way for highly effective concurrent simulations. These integrated data-driven modelling 
framework based on process modelling, machine learning, concurrent simulations and material 
homogenization are promising in simulation of injection-molded fiber reinforced composites, additive 
manufacturing and compressive molding components [3].  
 

3 Methodology 

3.1 Detailed FE Model 

There are already a number of approaches available for simulating the mechanical response of a 
pouch cell. Generally, there are certain modelling approaches that present each and every single layer 
of the battery cell and detailed description of the boundary conditions and failiure of the individual 
components of the cell such as anode, cathode and the separator, which can further aid in predicting 
the internal short cicuit or damage to the cell. Indeed, the high level of details in the model are 
accompanied by a high computational cost due to the large number of contact between the layers and 
the small discretization of the elements. On the other hand, in the macroscopic models the individual 
layers are not discretized separtely, but are directly averaged or homogenized in either the thickness 
or the radial direction in case of pouch or cylindrical cells respectively. These models are typically 
prefered over the detailed models because of their exceptional effeciency in terms of computational 
power. However, they always fail to capture the failiure modes of the individual layers at the 
microstructure level. As a result finding a perfect trade off between these two methods and combine 
the computational excellence and accuracy of both methods has become the field of interest. Hence, 
in this work a detailed FE model is created at the micro level which is furhter assisted by 
homogenization method and neural networks in order to reduce the compuational effort. 
The detailed layer wise FE model is created using the LS-PrePost software package which is used for 
preprocessing and postprocessing of CAE models. This model replicates the actual section of a 
physical pouch cell in a domain of 2.5 x 2.5 x 0.2 mm. The detailed FE model of the battery cell is 
created by modelling each layer separately and retaining the minute physical and microstructural 
details of the cell. Fig. 1. illustrates a representation of the microstructural model of the Li-ion pouch 
cell. The model is built with separate layers for the individual component for anode active material, 
anode current collector, cathode active material, cathode current collector and separator.  

 

Fig.1: Detailed FE model. 
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The material properties for this detailed model have been derived from the work done by Schmid et al 
[4], regarding modelling of Li-ion pouch cell for simulation of their mechanical behavior. One of the 
problems that is faced during modelling of such heterogeneous geometries is the modelling of the very 
thin layers as well as resolution of the elements with a very small characteristic length. To overcome 
this issue a detailed heterogenous model is defined and then used along with the RVE analysis card 
to have a homogenization simulation. For this study, a concept is employed, where the separator 
layers are defined predominantly using two types of elements, namely shell and solid elements. The 
shell elements will try to capture the in-plane behavior of the individual components, while the solid 
elements will simulate the out-of-plane behavior. The out-of-plane behavior is mainly defined by the 
shear response, interaction between the individual layers and the pressure in transverse direction [4]. 
After successfully establishing the microstructural model of the RVE, it becomes crucial to 
comprehend the formulation of the RVE analysis inside the FE framework. 
 

3.1.1 Contact Analysis 

There are potentially two approaches to construct the model with regards to the definition of contact. 
The two types of models created to compare the contact definition are: model with merged nodes and 
model contact definition. Fig. 2, displays the outcomes of the RVE model simulation under identical 
boundary conditions, but with two distinct contact definitions. 
 

 

Fig.2: Comparison of contact type definitions. 

Fig 3. illustrates that the force displacement response of both models, as obtained from the output file 
of the RVE homogenization process, has a high degree of similarity. Additionally, the model with 
merged nodes demonstrates efficient normal termination, boasting a remarkably short runtime of 
about 37 seconds and requiring minimal computational effort. However, the model with contact 
definition predominantly results in termination errors caused by convergence issues, exhibits 
somewhat slower performance, and requires a significant computing effort. Due to this, the model with 
merged nodes is deemed impractical for subsequent data generation due to its limitations. In contrast, 
the model with merged nodes is considered more suitable due to its comparable accuracy, 
straightforward configuration, and lower computational expenses. 
 

 

Fig.3: Force vs Displacement plot for the RVE. 
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3.2 The ML Method 

The fundamental concept of ML is allowing the computer to autonomously acquire the link between 
inputs and outputs, rather than explicitly presenting this relationship and afterwards calculating the 
outputs based on given inputs. Artificial neural networks (ANNs) demonstrate efficacy in handling 
numerical data exclusively and representing one-to-one relationships between inputs and outputs, 
provided such relationships exist. Convolutional neural networks (CNNs) are a specific type of ANNs 
that incorporate skip connections and weight sharing. These architectural features offer significant 
benefits for processing picture inputs, as they result in a substantial reduction in the number of weights 
required compared to fully-connected ANNs. However, Recurrent Neural Networks (RNNs) become 
suitable for modelling history-dependent material behaviours. In practical applications RNNs face 
various problems like the vanishing gradient issue that made them inappropriate for long-
termdependency problems. This led to the formulation of certain advanced architectures of RNN, 
namely the Long short-term mermory (LSTM)  unit and the gated recurrent unit (GRU). In this work the 
LSTM unit has been utilized and hence will be discussed in the subsequent section. The LSTM unit 
can be considered as an enhanced version of the basic RNN unit. Both the RNN nad LSTM units are 
illustrated in Fig.4. 
 

 

Fig.4: The RNN unit and LSTM unit. 

3.2.1 Data Generation 

The dataset holds significant importance in ML-related studies as the ML model's learning of 
underlying mechanisms relies on the data used for training. The objective of this study is to train the 
model using stress-strain values that the battery cell will experience during a full-scale car crash 
simulation. To this extent, the FE model of a side impact crash simulation of an electric hybrid vehicle 
is used. In this model the elemnts of the battery module are modelled using the state of the art 
concept of Batmac elements and Randals circuit in LS-PrePost. This assists in simulating the coupled 
response of the battery cell elements which combines the mechanical, electrical and thermal response 
of the cell. A python script is created for extracting the strain versus time behaviour of different 
individual elements of the battery cell components. The full scale simulations runs over a simulation 
time of 14 ms and one can successfully extract the strain paths for the six components of strain from 
different elements using this python script. LASSO-python is an open source python package is a tool 
which allows the user to access the output files from LS-DYNA (d3plot, binout, etc) and retrieve the 
required data from such files, and so it is extensively used for this task. Fig. 6. shows the various 
strain paths plotted against time, that are extracted from the full-scale crash simulation.  
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Fig.5: Strain paths from full-scale crash simulation. 

The previously generated detailed FE model will form the backbone of the the entire data generation 
process. The process of acquiring data to train our model is rather simple and straightforward. Let us 
consider just one strain path from the strain paths which were extracted in the previous step. The 
strain-time response of the combined six components of strain will serve as the input for the RVE 
techique-based simulation of the detailed FE-model of the battery cell. The rveout file is generated at 
the end of the simulation and holds the macroscopic or homogenized values for the RVE model. The 
strain values and the corresponding stress values can be extracted from this output file at every 
timestep and stored accordingly. A tool has been created using python which fetches a unique strain 
path, writes these values to the keyword file of the RVE model, runs a LS-DYNA simulation, extracts 
and stores the stress strain data successfully in a data structure and keeps on repeating this process 
recursively untill all the strain paths have been utilized. Each simulation generates a separate data 
point which in turn generates the stress and strain response that can be used as outputs and inputs 
respectively for the model training process. Python is used to further clean and prepare the generated 
data and present it in a more organized way in order to make it ready for the further steps. Two 
different data structures are created for strain and stress respectively. The dimension of the data 
structure is such that it can hold the information of all the six individual strain components and different 
timesteps for different elements respectively. Each simulation generates output for 70 different 
timesteps leading to 945 unique simulation runs. The final dimension of the data structure is 945 x 70 
x 6. Towards the end of this section, two different data structures for the stress and strain values are 
created, which can be effeciently used as output and input to the ML model in the subsequent steps. 
Fig 6 tries to illustrate the entire data generation process in a simplified way. 
 

 

Fig.6: Workflow for data generation. 
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3.2.2 The Sliding Window Approach 

The sliding window approach is employed to achieve an efficient training and verification process for 
the model [5]. This method of training helps the model to learn the pattern of the sequential data to 
make accurate predictions of the stress response. This is accomplished by partitioning the complete 
dataset into smaller segments of time-dependent data, each spanning the timesteps specified by the 
designated window size. Each of these smaller fragments can be denoted as a window and the data 
can be redistributed such that each of the windowed section can slide through the entire dataset and 
hence the name sliding window approach. For better understanding, consider a data point from the 
previously generated dataset. The individual strain path from Fig. 7 spans over 70 timesteps and the 
same data structure has the dimension as 1 x 70 x 6, where the evolution of all six components of 
strain over the 70 individual timesteps can be observed. Assume the window size for this case to be 5. 
So according to the sliding window approach, a new dataset will be generated with each of the data 
point having the dimension size as 1 x 5 x 6, where the first data point contains the information of the 
strain components for the first five timesteps, the subsequent data point will have the strain 
components for timestep number 2 to timestep number 6. This window will slide smoothly across all 
the individual data points, having an overlapping data storage until it reaches the values at the final 
timestep. So, in conclusion the dataset in the beginning having the size as 1 x 70 x 6 will be converted 
to the dataset having the size as (70-5) x 5 x 6 = 65 x 5 x 6. Recall the data generated in the section 
3.2.1 with the dimension size of 945x70x6will be translated to the new size of (945 x 65) x 5 x 6 = 
61425 x 5 x 6 using a user defined script that works on the principle of the above stated, sliding 
window approach. 
 

 

Fig.7: The sliding window approach. 

3.2.3 Data-driven Surrogate Model: Training and verification 

As discussed earlier, RNNs have the unique capabilities to replicate the stress-strain response of the 
battery cell model. Further the LSTM unit which is one of the types of a RNN is chosen to overcome 
the drawbacks of a classical RNN type neural network. The code for the model training and validation 
part is created in python programming environment and the Tensorflow package has been imported to 
define different types of artificial layers like a dense layer, LSTM layer etc. The LSTM model is built 
using two LSTM layers having 40 neurons each and the tanh activation function. The optimizer Adam 
is used along with MSE as the loss function. The data generated in the previous step is organized in a 
time-dependent way and can be used directly to train a regular deep neural network. For this purpose, 
each data point is further manipulated to have six components of strain at the input end and the 
corresponding stress components of stress at the output end. The sliding window approach discussed 
in the previous section is used to prepare the data with a final shape of 61425 x 5 x 6. Finally, there 
are 61425 unique data points of input and output data. This dataset is divided into a 90:10 train test 
split and the training data is applied to the input layer of the LSTM model.  
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Parameter LSTM Model Modified LSTM Model 

Number of hidden LSTM 
layers 

2 2 

Number of neurons per layer 50 50 

Activation Function tanh tanh 

Optimizer adam adam 

Loss Function mse mse 

Metrics R2 score R2 score 

Epochs 500 500 

Window Size 5 3 

Input Features ε11, ε22, ε33, ε12, ε13, ε23 
ε11, ε22, ε33, ε12, ε13, Δε23, Δε11, 
Δε22, Δε33, Δε12, Δε13, Δε23 

Input Dimension 61425x5x6 63315x3X12 

Output Feature 
σ11, σ22, σ33, σ12, σ13, 
σ23 

Δσ11, Δσ22, Δσ33, Δσ12, Δσ13, 
Δσ23 

Output Dimension 61425x5x6 63315x3x6 

Table 1: Details of the training process for LSTM and modified LSTM model. 

Further, the various details of the LSTM architecture are illustrated in Table 1. Finally, the model 
training is initiated with a validation split of 20% and the epoch for training is set to 500.The trained 
LSTM model is verified against the test data that is separated initially from the training data and so it is 
never learned by the ML model. A python script is created to further test the model and create 
comparison plots between the values predicted by the model and the ground truths. This script imports 
the ground truth values for strain and stress in two different arrays which holds the response of the 
battery with respect to time. Further, the script runs recursively in a loop by loading the strain 
component at a specific timestep, calling the LSTM model to predict the stress values, and storing 
them in a separate array. In the end the true values of stress and strain as well as the predicted stress 
values are plotted against timesteps. 

3.3 Implementation of Surrogate Model with LS-DYNA 

 

Fig.8: Pipes.py: The pipelining framework. 

During a LS-DYNA simulation the LS-DYNA solver extracts the information from individual 
material/integration points and runs the UMAT subroutine. The UMAT file typically holds the 



14th European LS-DYNA Conference 2023, Baden-Baden, Germany 
 

 

 
© 2023 Copyright by DYNAmore GmbH, an Ansys Company 

 

information of the material model and is responsible for predicting the stress response at that timestep 
from the given strain increments and history information. But the idea of this research is to replace the 
classical UMAT which is ideally defined in a fortran file by a user-defined python script. This can be 
achieved by using the pipelining framework developed by Joachim Sprave, which is illustrated in detail 
in Fig. 8. The methodology employed in this study involves the flow of data between the python script 
and other components over many parallel pipes. The typical flow of data is such that, the strain and 
history variables are transferred to the python script, where the stress prediction takes place and the 
updated stress values are transferred back to the UMAT or in turn the LS-DYNA solver through the 
pipes. This framework allows the replacement of the traditional fortran-based material 
model/description by a python file and facilitates the utilization of various packages like tensorflow, 
pytorch and scikit learn through python to achieve efficient operation of the input/output data. The 
surrogate model which is trained in the previous step, will be accessed through a python script and the 
concurrent simulation of the LS-DYNA model and the surrogate model can be effectively achieved. 
Fig. 9 helps to understand how the flow of data takes place through the entire co-simulation 
environment.  

 

Fig.9: Implementation of surrogate model. 

The LS-DYNA solver, pipes.py framework and the Surrogate Model form the backbone of the co-
simulation loop. As discussed earlier the communication between the surrogate model and the LS-
DYNA solver is established using the pipes.py framework. For understanding the process, assume the 
model is trained for absolute strain and stress values for five timesteps each so that the final shape of 
the input and output data to the model is 5 x 6. At the beginning of the simulation both the arrays for 
stress and strain are initialized with zeros. During the first timestep of the simulation, the strain 
increments for the same time step are extracted from the LS-DYNA solver and transferred to the 
surrogate model through the pipelining framework. These values will be placed at the last position of 
the strain array that will be applied to the surrogate model, which will predict the corresponding stress 
array. From this array, the stress components from the last position will be extracted and transferred 
back to the LS-DYNA solver for further operation. Now for the next timestep the values from the last 
four positions of the strain array will be placed in the first four positions of the strain array so as to 
store the history information and the new strain increments from the LS-DYNA solver will sit in the very 
last position of the array. The surrogate model will then predict the stress values, which will be sent 
back to the LS solver through the pipes. Now the process described above will occur in a recursive 
manner till the end of the simulation time. This proven methodology can be used in the upcoming 
stages to set up different load cases using the surrogate model to validate the results against the 
detailed FE-model.  

4 Results and Discussion 

In this section the verification and validation results of the implemented surrogate model are 
presented. The verification results for the data-driven model against unseen data are presented along 
with the challenges occurred and the corresponding proposed solution. The model is trained using 
data obtained from an implicit RVE analysis. Consequently, it is expected that the model's predictive 
accuracy may be compromised when applied to simulations conducted under different conditions. Due 
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to this, it is initially validated for an implicit type of simulation. Further, the same model setup is 
simulated using an explicit simulation and the results of the surrogate model are validated. 

4.1 Testing and Verification of Surrogate Model 

The LSTM model is trained using the procedure prescribed in section 3.2.3 and verified with the help 
of the developed python script. The corresponding results for the LSTM model are illustrated below in 
Fig.10. 

 

Fig.10: Verification results for LSTM based model. 

The plots from Fig.10 indicate that the model's predictive capabilities are inadequate for the provided 
strain inputs which is further explained by the low R-squared score of 0.20809. It is evident that the 
model produces an inaccurate output and exhibits instability over the concluding timesteps. So, it is 
imperative to develop a neural network architecture to enhance the overall efficiency of the models. To 
do so a modified model architecture has been developed as depicted in the Table 1.  

 

Fig.11: Verification results for modified LSTM based model. 

Initially a hyperparameter study is carry out from which it is concluded that the model gives better 
predictions when trained with the data having a window size of 3 timesteps. Secondly the input and 
output feature provided to the model are modified to make the model a bit more robust. The model is 
supplied with both the absolute strain components and the incremental strain components at each 
timestep and the output to the modified model are the six components of the stress increments. By 
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providing such data to the model, the model can learn the trend of the input data in a more optimized 
way and make accurate predictions by avoiding the abrupt jumps in the predictions in the region 
where the strain components of the model are constant over longer periods of time. This new modified 
model is trained for 500 epochs and is tested against unseen data using the same python script from 
the previous step. These verification results are illustrated in detailed in Fig. 11. There is huge 
improvement in the model’s prediction ability and the model can efficiently make accurate predictions 
as compared to the ground truth value. The high accuracy of this modified model can be attributed by 
the high R-squared score of 0.99825. The current model will be used in the next steps for further 
implementation and validation of the model in a LS-DYNA co-simulation.  

4.2 Implicit Analysis 

An implicit analysis is signified by very high timestep size and corresponding high strain increments for 
each timestep. As the surrogate model has been trained under similar simulation conditions, it can 
reproduce the results like a classical FE model. For the validation procedure, the results of the 
surrogate model and the detailed FE model are compared. To achieve this, a single-element model is 
constructed in LS preprocessor with the same dimensions as the detailed FE model of the battery cell. 
This single-element model is then initialized with the UMAT which holds the information of the 
surrogate model. Now both the models namely, the detailed model created using the classical FEM 
approach and the one modelled using the data-driven approach are subjected to similar loading 
conditions to have accurate comparison of the two approaches. Four different load cases are used in 
this step for validating the models. The first one is ‘Uniaxial Compression’. For this load case the 
nodes from the left-most face of both the models are connected at a single node using nodal rigid 
bodiesd and are provided with a single point constraint (SPC) boundary condition to restrict all the 
degrees of freedom for these nodes. While the nodes on the right-most face are all provided with a 
prescribed displacement in the negative Y direction to have a compressive effect on the entire model. 
Similarly, for the ‘Uniaxial Tension’ load case the prescribed displacements are applied in the positive 
Y direction to simulate the tensile behavior of the model and for the ‘Cyclic Tension-Compression’ load 
case the models are initially subjected to a compressive loading followed by a tensile loading 
condition. To simulate the crushing behavior of the battery cell the ‘Crush Test’ load case is applied to 
the models. For this load case, the bottom face of the models is completely constrained while 
prescribed displacements are applied to the nodes from the upper face of the models in the negative Z 
direction to simulate the crushing effects of the battery cell. The detailed description of these four load 
cases can be seen in Fig. 12.  
 

 

Fig.12: Load cases for implicit analysis. 

 
The load cases discussed above are simulated for the models created using the classical FEM 
approach as well as the one created using the data-driven approach. The next step is to identify a 
reliable method to effectively compare the response of both the models. In this work, the comparison 
of models is done by the values of the reaction force extracted from the node at the center of the rigid 
elements, that has been defined using a SPC boundary condition. This information regarding the trend 
of the reaction force can be extracted from the binout file through the bndout section in LS-PrePost. 
This is possible only if the SPC2BND flag from the control card is set to 1, which allows the user to 
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observe the reaction forces occurring at a completely constrained node using the binout file. The 
comparison of results for all the different load cases is presented below in Fig.13.  
 

 

 

Fig.13: Comparison of reaction forces: (top-left) uniaxial compression (top-right) uniaxial tension 
(bottom-left) crush test (bottom-right) cyclic tension-compression. 

It is clear from the results presented in Fig. 14, that the data-driven approach and in turn the surrogate 
model has the potential to reproduce the results produced by the classical FE modelling method. The 
methodology devised for the development of a co-simulation including the LS-DYNA model and the 
surrogate model has demonstrated significant efficacy, yielding results with high amount of precision. 
In case of the detailed FE model, the solver must implicitly find the solution for a very large number of 
elements, which makes the task computationally very difficult. On the other hand, the model simulated 
with the surrogate model comprises of only one element and so the computational effort for this 
method drastically reduces. Hence, the data-driven approach is faster as compared to the former FEM 
approach. The detailed model takes 4-5 minutes to run a particular load case, while the surrogate 
model runs the same simulation in less than one minute. 

4.3 Explicit Analysis 

After achieving good results in case of an implicit simulation, the next immediate step is to validate the 
results of the surrogate model for an explicit simulation. Two different models are created in the same 
way as prescribed earlier for the case of an implicit simulation. Both the models are simulated for the 
same load case of uniaxial compression and the comparative results for reaction forces are presented 
in Fig. 14. The data-driven approach clearly fails to make accurate predictions and the results are 
completely diverging from the ground truths or in this case the results generated by the classical FEM 
approach. It is important to understand the reason behind the divergence of the surrogate model 
predictions from the expected results. This can be clearly attributed to the input provided to the 
surrogate model. As established earlier, the model has been trained for an implicit timestep size which 
is quite large as compared to the timestep size incurred during an explicit analysis. The magnitude of 
the step size and in turn the strain increment size for an explicit simulation is approximately 1000 
times smaller than that of an implicit simulation. When the model receives such small values as input it 
tends to produce erroneous outputs which further get accumulated and multiplied recursively over 
time. This phenomenon can be clearly seen from Fig. 15. 
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Fig.14: Comparison of results from Implicit and Explicit simulations (prediction in case Explicit 
simulation not good as the surrogate model is trained on data only from an Implicit simulation) 

Fig. 15, shows how well the model predicts as compared to the ground truth, when the LSTM model is 
validated for a bigger step size and strain increments for 70 timesteps. 

 

Fig.15: Surrogate model prediction for bigger step size with 70 steps. 

While on the contrary, the model predicts very high values and diverges completely from the ground 
truth curve. As discussed earlier, the data-driven models do not have the ability to retain high accuracy 
in case of certain scenarios that are not the same as the training conditions. Due to this reason a 
model that has been trained on data from an implicit simulation cannot reproduce good results in case 
of an explicit simulation. The very first solution that can be adopted to tackle this problem, is to train a 
new surrogate model using data with a very small step size comparable to that of an explicit 
simulation. Also, after a closer examination of Fig.15 it can also be concluded that the model 
predictions are indeed scaled to a higher magnitude, but the model still manages to retain the same 
trend as compared to the ground truth. So, in the next step a new model is trained using a rather finer 
dataset with very low step size along with application of a scaling factor of 105 to the incremental strain 
values to obtain a rather optimized version of the surrogate model that can be used for attaining 
accurate predictions in case of an explicit simulation. 
This improved surrogate model is further used in a concurrent simulation to validate it’s results against 
the detailed FE model. The steps for setting up the model are the same as mentioned in the previous 
section and the comparative results for the load case of ‘Uniaxial Compression’ and ‘Uniaxial Tension’ 



14th European LS-DYNA Conference 2023, Baden-Baden, Germany 
 

 

 
© 2023 Copyright by DYNAmore GmbH, an Ansys Company 

are depicted in Fig.16. It can be observed that the improved model demonstrates good level of 
accuracy and manages to follow the similar path as in case of the implicit analysis model and the 
classical FE model. Although the improved model manages to reproduce accurate results, it is way 
slower as compared to the classical FEM approach. Due to very low step size, the total number of 
timesteps in case of an explicit simulation increases exponentially. And so, the total number of times 
that the surrogate model will be accessed increases proportionally. The pipelining framework slows 
down the entire simulation process, and with a higher number of steps the total run time of the 
simulation is affected tremendously. Due to this a regular explicit simulation that requires 4-5 hours to 
run using the FEM approach will need more than a day to successfully carry out the same simulation. 

 

Fig.16: Comparative results for an explicit simulation a) uniaxial compression and b) uniaxial tension. 

5 Summary 

In this paper the methodology for development and implementation of a data-driven approach for 
improving the current Battery modelling techniques is presented. In the very first step, a detailed FE-
model of the lithium-ion battery cell is created in the micro-scale domain. This detailed model can be 
treated as a RVE and further used to set up a RVE analysis simulation, in which displacement 
gradient components can be used as inputs to simulate the stress-strain response at the micro-level 
as well as obtain homogenized results of the model at the macro-level. This type of model enhances 
the scale-bridging abilities and makes the model more suitable for multiscale simulations. 
This detailed FE-model is then used to generate a huge dataset by applying different strain paths to 
the RVE analysis of the model, which are extracted from the large-scale car crash simulations. A well-
structured autonomous method is developed, which runs an individual RVE analysis and stores the 
corresponding stress strain response in a recursive manner.  
This dataset is used to train a data-driven surrogate model. The sliding window approach is employed 
to generate a more robust dataset for model training purposes. A LSTM based architecture is selected 
to train the surrogate model which demonstrate poor prediction ability when verified against unseen 
data. To overcome this issue, a modified version of the LSTM based model is successfully trained 
using both absolute and incremental strain values as input along with incremental stress values as 
output. The model is further enhanced by scaling the incremental values as compared to the absolute 
values to achieve a rough normalization of the entire dataset. Finally, this model exhibits excellent 
results when it is validated against unseen data and can further be used for implementation in a LS-
DYNA co-simulation. 
The framework for implementation of the surrogate model along with a LS-DYNA simulation is 
established with the help of pipes.py (the pipelining framework). With the implementation of the 
surrogate model, it is further validated against the classical FEM approach for various load cases. The 
surrogate model demonstrates accurate predictions in case of an implicit simulation along with very 
low computational effort and time. But the same model fails to perform adequately in case of an 
explicit simulation. With some improvements in terms of the training data, the model does succeed to 
provide better results in case of the explicit simulation, but it also highlights the heavy influence of the 
training data, parameters, and training conditions on the performance of the data-driven approach. 
This in turn motivates the future research that can be carried out in the direction of self-consistent ML 
models, that are independent of the training attributes.  
Although the current work presents the methodology for use of a single-element model in conjunction 
with the surrogate model, the concept can be further developed to be used for a model with multiple 
elements. This advancement will open the possibilities for use of such data-driven surrogate models to 
be used in large-scale car crash simulation and facilitate optimal battery design procedures. 
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