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Abstract 
Subcycling in explicit finite element simulations refers to the technique where a model is 
partitioned in levels of the characteristic time step of its constituting finite elements. Each sub 
model is then integrated independently of the others using a time step that pertains to that 
specific sub model, with the exception of special treatment at the interface between sub models. 
With the subcycling option in LS-DYNA, up to seven sub models are automatically generated, 
each integrated in steps of 1, 2, 4, 8, 16, 32 and 64 times the smallest characteristic time step of 
the entire model. To allow more control of the partition, the user may manually designate parts 
to be integrated at specific time steps. This is sometimes referred to as multiscale since it is 
mainly intended for detailed modeling of critical components in a large simulation model, i.e., 
different time scales are used in order to save CPU time.  This paper presents the current status 
of this feature in LS-DYNA, including a detailed description of the involved algorithms and 
presentation of small to large scale numerical examples.

 
Introduction 

In transient structural analysis, the stable time step for explicit time integration is bounded by the 
maximum natural frequency of the model. In practice the stable time step is estimated as the 
reciprocal of the maximum natural frequency of an arbitrary finite element, suggesting that the 
natural frequencies affecting stability are spatially local in their nature. To this end, it may 
sometimes be convenient to use multiple time steps since a local region of a structural model 
may require a much smaller time step than the rest, thereby decreasing the computation needed 
to solve the problem significantly. This method is called multi time stepping, or subcycling, and 
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Figure 1 Using different time steps in different subdomains, interface between subdomains by 
constraints indicated by red and due to contact by green.
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has been discussed extensively in the literature [2-4]. The main idea is to partition the model into 
sub models where each sub model is integrated with a time step that is stable for that particular 
region of elements, see Figure 1. Subcycling would be trivial if it wasn’t for the interaction 
between domains that use different time steps, where the interface can be either in the form of 
element connections (constraints) or contacts (penalty), see Figure 1. In research a lively debate 
has concerned the stability and accuracy of various approaches to treat constrained interfaces, 
while the authors don’t know of a treatment of penalty contacts in this context. The raison d’être 
of subcycling is the locality assumption of the natural frequency modes, but there will inevitably 
propagate spurious waves across interfaces between sub domains and the main question is how 
this will affect stability of a given method. 
The present work has been undertaken under the assumption that subcycling is in practice stable, 
or at least can be made stable by combining research results and common sense. Even though 
LS-DYNA [1] has had a subcycling algorithm for many years this has not been used extensively 
for reasons pertaining to its robustness but also due to lack of its practical needs and potential 
gains. With the large scale state-of-the-art models in the automotive industry today, and the 
potential need to use ridiculously fine mesh in selected regions to accurately predict failure, the 
interest for the method has been revived. With this motivation, the subcycling algorithms have 
been revised and extended to include both automated and manual partition of the model with 
respect to time steps. The terminology used for distinguishing between these two ways of 
applying the multi time step algorithms is subcycling and multiscale, respectively. In the wake of 
the success of selective mass scaling, the hope is that this will provide a competitive alternative 
for users in need of decreasing their simulation times. The implemented algorithm is presented 
next and is followed by a summary of the LS-DYNA keywords. The paper ends with numerical 
examples and a brief summary. 

 
 

Subcycling algorithm 
A detailed explanation of the subcycling algorithm in LS-DYNA follows, and the reader is 
referred to the figures for illustration of the involved steps. To simplify the exposition, we don’t 
take into account TSSFAC on *CONTROL_TIMESTEP. Keywords that are introduced will be 
summarized in the next Section. 
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Figure 2 Example mesh for illustrating subcycling, ࢓ = ૚૝, ࢔ = ૛૛. 
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Time step calculations 
A finite element model consists of ݉ elements and ݊ nodes, let ܫ be the index set of all elements 
and ܬ the index set of all nodes. Furthermore, let ܬ௜ be the index set of nodes for the connectivity 
of element ݅ and similarly ܫ௝ the index set of elements for which node ݆ is part of its connectivity. 
Each element has its characteristic time step ∆̃ݐ௜ calculated according to 
௜ݐ̃∆  = ݈௜ඥߩ௜/ܧ௜         (1) 
where 
 ݈௜ = Chacteristic element size (length) 
௜ܧ  = Element stiffness modulus (force/area) 
௜ߩ  = Mass density of element (mass/volume), 
 

 
see Figure 2 for an example mesh with time steps. 
The characteristic time step ∆̃ݐ௝ of a node is defined as 
௝ݐ̃∆  = min௜∈ூೕ  ,௜ݐ̃∆
i.e., the minimum of the time steps for the elements the node is part of, see Figure 3. 
The global simulation time step ∆ݐ  is taken as the minimum of all characteristic element time 
steps ∆̃ݐ௜ (or equivalently nodal time steps ∆̃ݐ௝) and bounded below by a user specified time step ∆̅ݐ for mass scaling, 
ݐ∆  = max ሺ∆̅ݐ, min௜∈ூ  ,௜ሻݐ̃∆
where in fact ∆̅ݐ corresponds to the (negative) DT2MS parameter on *CONTROL_TIMESTEP.  
The nodal simulation time step for node ݆ is a convenient multiple of the global simulation time 
step 
௝ݐ∆  = ݇௝∆ݐ ≤ min ൫ݐ∆ܭ,max ൫∆̅ݐ,  ௝൯൯      (2)ݐ̃∆
where ݇௝ is the largest integer of 1, 2, 4, 8, 16, 32 or 64 that fulfils the inequality and ܭ is an 
input parameter that bounds the maximum simulation time step. This is the time step that each 
node is using for the explicit time integration, and the keyword used for specifying the maximum 
time step is  
 *CONTROL_SUBCYCLE_{K}. 
For future reference, let ܭഥ be defined as 

ഥܭ  = ୫ୟ୶ೕ∈಻ ∆௧ೕ∆௧ ,          (3) 

noting that this number may be strictly smaller than the user defined value ܭ. 

ସݐ̃∆
ହݐ̃∆

଻ݐ̃∆ ଼ݐ̃∆
ଵ଴ݐ̃∆

Figure 3 Characteristic nodal time step, ∆࢚෤૚૙ = ,෤૝࢚∆ሺ⬚ܖܑܕ ,෤૞࢚∆ ,෤ૠ࢚∆  .෤ૡሻ࢚∆



Session: Simulation 13th International LS-DYNA Users Conference 

1-4 

The element simulation time step must not exceed the simulation time steps for the nodes in the 
connectivity, and hence 
௜ݐ∆  = min௝∈௃೔  ௝ݐ∆
is the time step that is used for computing internal forces, see Figure 4. It is clear that this time 
step will also be some multiple ݇௜ of the global time step ∆ݐ௜ = ݇௜∆ݐ, ݅ ∈  (4)         .ܫ
 

 
Forces and integration 

Every ܭഥ:th time step is called a synchronization step, because then all nodes and elements are 
involved in the calculations, see (3). Assuming we are at a time ݐ that corresponds to such a 
synchronization step, and for the sake of convenience that ∆ݐ is constant in time, we compute ࢌ௧௝ 
for ݆ ∈  ,and use this to update the coordinates at the next known point in time ܬ
௧௝ࢇ  =  ௧௝/݉௝ࢌ
௧ା∆௧ೕ/ଶ௝࢜  = ௧ି∆௧ೕ/ଶ௝࢜ +  ௧௝ࢇ௝ݐ∆
௧ା∆௧ೕ௝࢞  = ௧௝࢞ + ௧ା∆௧ೕ/ଶ௝࢜௝ݐ∆ , 

where ݉௝, ,௝ࢇ  .௝ denote nodal mass, acceleration, velocity and coordinate, respectively࢞ ௝ and࢜
Obviously, nodal velocities and coordinates must be known at intermediate time steps and the 
constant velocity approach is used in LS-DYNA. So for node ݆ the nodal coordinates ࢞௧௝ and ࢞௧ା∆௧ೕ௝  are known from the explicit integration scheme and intermediate coordinates are 
determined according to 

௧ା௞∆௧௝࢞  = ௧௝࢞ + ௞∆௧∆௧ೕ ቀ࢞௧ା∆௧ೕ௝ − ,௧௝ቁ࢞ ݇ = 1,… , ∆௧ೕ∆௧ − 1, 

and the velocity is therefore constant, 

௧ା௞∆௧௝࢜  = ௧ା∆௧ೕ/ଶ௝࢜ , ݇ = ଵଶ , ଷଶ , … , ∆௧ೕ∆௧ − ଵଶ. 
The contribution to the nodal forces from elements (i.e., internal force contribution) is only 
performed when needed, from (4) it follows that an element ݅ is processed only every ݇௜:th step. 
The external forces, including contacts, are processed every ܮത:th step, computed as 
തܮ  = min ሺܭഥ,  ,ሻܮ
where in turn ܮ is a user defined input parameter taken from 

Figure 4 Nodal and element simulation time steps, ∆࢚ૡ = ,૚૙࢚∆൫⬚ܖܑܕ ,૚૚࢚∆ ,૚૝࢚∆  .૚૞൯࢚∆
ଵ଴ݐ∆଼ݐ∆ ଵଵݐ∆

ଵସݐ∆  ଵହݐ∆
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 *CONTROL_SUBCYCLE_{K}_{L}. 
If  ܮ is not specified on this keyword, ܮ =  and whence the user has the option to process ,ܭ
contacts more or less often depending on the application. For a given node ݆ the contribution 
from the external forces will be the last computed. This means that if ܮത < ݇௝ only some external 
nodal forces are actually used, the intermediate ones are discarded. Also, if ܮത > ݇௝ external 
nodal forces are stored and reused until new ones become available. 
 

Multiscale 
In this context, multiscaling is distinguished from subcycling in that the time steps are explicitly 
determined by the user. This is done by setting DT2MS on *CONTROL_TIMESTEP to a 
negative number and using *CONTROL_SUBCYCLE_MASS_SCALED_PART_{SET} to 
specify mass scaling time steps TS individually for selected parts. The outcome of this is that 
each element will be associated with a mass scaling time step, either one of the TS values if the 
element belongs to one of these parts, otherwise the (negative) DT2MS value. With reference to 
the previous section and abuse of notation, this replaces the characteristic time steps calculated 
in (1) by user defined multiscale time steps ∆̃ݐ௜, ݅ ∈  The rest of the algorithm applies except for .ܫ
that ∆̅ݐ = min௜∈ூ ܭ ௜ andݐ̃∆ = 64. An automotive application of this feature would be to integrate 
small but highly refined parts, like solid element spotwelds, with a small time step while the rest 
of the vehicle is integrated with a large time step. 
 

Mass scaling 
Regardless if subcycling or multiscaling is used, each element simulation time step will be a 
multiple of the global simulation time step, and as indicated in (4) this multiple integer is unique 
for each element. But it must not change with time. The reason pertains to the way LS-DYNA 
stores and processes elements internally and is a necessity in order to maintain computational 
efficiency of the algorithm. However, the characteristic time step ∆̃ݐ௜ of the elements are 
changing with time since the elements deform and whenever we have 
௜ݐ̃∆  <  ௜ݐ∆
mass scaling is used to increase the stable time step to that of the simulation time step. More 
specifically, the inertial mass of an element will be scaled by the factor 

௜ߙ  = ቀ∆௧೔∆௧ሚ೔ቁଶ. 

So, even if no mass scaling has been requested by the user, there may be mass scaling going on 
to render stability and efficiency to the subcycling algorithm. At this point we should also 
mention that the mass is rescaled only at the synchronization step, i.e., every ܭഥ:th step. 
 

Contacts 
Contact treatment demands a section on its own, because it is probably the most critical aspect in 
the subcycling framework. To get an idea of the problem, it is important to understand how 
penalty contacts affect stability in explicit simulations, a crude mathematical analysis follows. 
In principle, whenever a slave node ݆ penetrates a master segment a contact element is created 
“on the fly”, to which some contact stiffness ߢ௖௝ is associated. In contrast to how other finite 
elements are treated, there is no corresponding mass added to the system and the time step is not 
adjusted accordingly, which means that the contact stiffness must be bounded above. If the node 
is associated with stiffness ߢ଴௝ from structural elements, the accumulated stiffness in contact will 
be 
௝ߢ  = ଴௝ߢ +  ௖௝,          (5)ߢ
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and if the mass of the node is ݉௝ the stable time step will decrease to that of 

௝ݐ̃∆  = ට௠ೕ఑ೕ ≥ Δݐ௝.         (6) 

This should not fall below the simulation time step Δݐ௝ to maintain stability for the contacts, and 
there must therefore be a margin for adding contact stiffness to the nodes. Now, since the time 
steps in the subcycling algorithm are determined from structural stiffness and mass, we can 
assume that the simulation time step  Δݐ௝ is roughly given by 

 Δݐ௝ = ඨ௠ೕ఑బೕߚ  

where ߚ < 1 is a safety factor. Inserting this in the inequality (6) and using (5) in combination 
with (2) we get an expression for the maximum contact stiffness 

௖௝ߢ  ≤ ቀ ଵ௞ೕቁଶ ൫ଵିఉమ൯ఉమ௠ೕ∆௧మ = ቀ ଵ௞ೕቁଶ  ௖௝       (7)ߢ̅

where we have used 

௖௝ߢ̅  = ൫ଵିఉమ൯ఉమ௠ೕ∆௧మ  

to represent a critical contact stiffness for conventional explicit simulations. From (7) we see that 
the contact stiffness should ideally be scaled with the square of the time step scale factor, i.e., the 
contact must be softer for nodes with large time steps. The challenge in this respect is how to 
treat interaction between nodes of different time steps; although the theoretical answer would be 
to use the smallest stiffness of the involved nodes this might in practice lead to a very soft 
contact. At the moment of writing, this issue has only been partly resolved and work is being 
undertaken to get a better understanding to develop a more robust contact treatment. 
 

Keywords 
The first keyword introduced in the previous Section relates to subcycling based on characteristic 
time steps, 
 
 *CONTROL_SUBCYCLE_{K}_{L} 
 
and activates subcycling with a maximum ratio of K between the time step of an arbitrary node 
and smallest time step overall for the explicit integration scheme. K can take values 1, 2, 4, 8, 16, 
32 or 64. The reason for having this parameter K as an option is mainly due to the lack of 
theoretical results for stability in subcycling, whence the user may determine the level at which 
subcycling should be made. 
The parameter L should be less than or equal to K, and may also take values 1, 2, 4, 8, 16, 32 or 
64. This parameter gives the maximum number of time steps between external force calculations, 
including (penalty) contacts. Since contacts contribute significantly to the computations it may 
be of benefit to use L larger than 1, but since on the other hand they also affect stability this 
option should be used with care. The default values of K and L are K=16 and L=1. 
The second keyword relates to subcycling based on user defined time steps (multiscale), 
 

*CONTROL_SUBCYCLE_MASS_SCALED_PART_{SET} 
 

and when used K is ignored whether or not the first keyword is part of the input and regardless 
what the user sets K to. If the user wants to input a non-default value for L, this may be done by 
including the first keyword in the input. With this keyword, parts or part sets P(S)ID are 



13th International LS-DYNA Users Conference Session: Simulation 

 1-7 

associated with a given mass scaling time steps TS that indicate how to partition the model with 
respect to different time scales. To this end, parts that are not explicitly specified using this 
keyword are given the (negative) DT2MS value from *CONTROL_TIMESTEP, and whence the 
user is in complete control on how to subcycle the model of interest. 
 

Examples 
S-rail 

An S-rail problem is solved in order to examplify the usage of the subcycling and multiscale 
algorithms in the context of refined spotweld modeling, see Figure 5. A spotwelded beam with 
added mass at the rear is given an initial velocity and impacts a fixed rigid wall, the three rail 
constituents consist of one fine mesh and two coarse meshes but all have the same steel material. 
The model consists of 24640 shell elements and 55296 solid elements, the latter ones making up 
the 54 spotwelds, see Figure 5 for a close-up of two spotwelds in the initial and deformed 
configuration. The initial smallest characteristic time step is 2.31e-5 (ms) and the problem is run 
on 12 processors using mass scaling corresponding to DT2MS=-2.6e-5 and a time step safety 
factor of TSSFAC=0.8, see *CONTROL_TIMESTEP. The simulation time of 3757 seconds for 
this explicit run is used as reference. By appending *CONTROL_SUBCYCLE_64_4 to the 
input, all solid elements are using the smallest time step while the shells are automatically 
partitioned into 2572/0/894/8859/10452/653/1210 elements running on 1/2/4/8/16/32/64 times 
the smallest time step, respectively. The simulation time for this input is 3406 seconds. As an 
alternative, we use the multiscale option by specifying mass scaling time steps 2.6e-5 for the 
solid spotwelds, 1.6e-4 for the fine shell mesh and 6e-4 for the coarse shell meshes. This leads to 
a partition of the model into 2572/0/20202/1866 shell elements running on 1/2/4/8 times the 
smallest time step, respectively. The simulation time for this input is 3454 seconds, a little higher 
than the subcycling case but still significantly smaller than the reference. The results are almost 
identical, see Figure 6, and a close examination of the timings reveal what is expected; 
contributions come not only from the element processing but the time spent in contact 

calculations is about 4 times less for the subcycling and multiscale cases, see Table 1. This is of 
course due to the option L=4 for the external force calculations. 
  

ݐ = ݐ 0 =  ݏ݉	10

Figure 5 S-rail problem with two spotwelds highlighted.
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Table 1 Detailed timings for the S-rail problem. 

S-rail CPU timings (s) Subcycling, K=64, L=4 Multiscale, L=4 No subcycling 
Contacts 78 79 241 
Elements 1783 1790 2141 
 

 
Toyota Rav4 

The 1997 Toyota Rav4 model from NCAC [5] is used in a 10 ms side hit simulation, the vehicle 
is made up of 501587 shell elements and 21539 solid elements. A 7 kg cylinder impacts the side 
with a velocity of 30 mph (13.4 m/s) at the location of the B-pillar, see Figure 7 for the initial 
and final configuration. In the B-pillar 2 parts are refined to demonstrate the use of subcycling 
and multiscale, and the smallest initial time step is 1.3e-4 (ms) for one of these refined elements. 
On *CONTROL_TIMESTEP, DT2MS=-1.249e-4 is used for mass scaling of the model, this 
simulation takes 1443 seconds on 48 processors. As for the S-rail problem, 
*CONTROL_SUBCYCLE_64_4 is used for the subcycling run which leads to a partition of the 
vehicle according to Figure 8. The B-pillar, rigid materials and elements connected by spotwelds 
(nodal rigid bodies) use small time steps while most of the vehicle is using 8 times the smallest 
time step size or higher. The multiscale option is then used by using a time step of 1.249e-4 for 
the B-pillar parts indicated in Figure 7 and a DT2MS=-1e-3 for the rest of the vehicle, this 
changes the partition of the model into 93948 shells and 1838 solids using the smallest time step 
(the B-pillar, rigid materials and spotweld connections), while 407639 shells and 19701 solids 
use 8 times the smallest step.  
The subcycling and multiscale simulations take 795 and 906 seconds, respectively, so for the 
Rav4 this technique is really paying off. The detailed timings in Table 2 show similar tendencies 
as for the S-rail problem, and results are insensitive to applying either subcycling or multiscale, 
see Figure 9. However, when comparing these timings to applying selective mass scaling on the 
B-pillar parts and using DT2MS=-1e-3 it turns out that both methods are behind, the selective 
mass scaling simulation completes in 304 s with very similar results. We hesitate to draw general 
conclusions from this since this example may not represent the best possible usage of either of 
the methods. What would be the outcome if for instance the model size was to be increased or if 
the refined parts were to be distributed all over the vehicle, as it would for deformable 
spotwelds? More questions like these may be asked but only speculative answers can be made, 
the definite ones lie in the future.   
  

Figure 6 Rigid wall force and internal energy for the S-rail problems. 
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Table 2 Detailed timings for the Toyota Rav4. 

Rav4 CPU timings (s) Subcycling, K=64, L=4 Multiscale, L=4 No subcycling 
Contacts 133 133 288 
Elements 194 206 636 
 
 

 
 

Toyota Camry 
The latest NCAC model is a Toyota Camry, consisting of 1603439 shell elements, 64257 solid 
elements and 5102 beam elements, that impacts a stationary rigid wall at a speed of 35 mph (56 
km/h), see [6] and Figure 10. A few model adjustments were made to improve robustness, and 
from that a standard explicit simulation is compared to that of using subcycling (no multiscale). 
Out of a few attempts with subcycling, some terminated with errors, some terminated 
successfully but with poor results and some terminated successfully with acceptable results. The 
experience from running this example is that contacts play an important role in getting 
subcycling robust and accurate, and adjustments of the contact stiffness usually has an effect of 
the outcome. The original model comes with a segment-to-segment based single surface contact 
algorithm for the vehicle (SOFT=2 on *CONTACT_AUTOMATIC), but the common node-to-
segment contact (SOFT=0 on *CONTACT_AUTOMATIC) is also used in our tests. The results 
in this section come from using the latter contact with default contact stiffness and the default 
settings for subcycling, i.e., *CONTROL_SUBCYCLE_16_1. The model is run with a mass 
scaling time step of 1 microsecond, and as it turns out, see Figure 11, 91 % of all elements are 
associated with the smallest time step and unfortunately great savings in CPU timings cannot be 
expected. This model is included herein mostly to examine the robustness of the subcycling 
algorithm for a common large scale automotive application. Comparison of CPU timings 
between the original and subcycling runs is found in Table 3 and results in form of energy and 
rigid wall force is shown in Figure 12. 
 
 

ݐ = ݐ 0 = 10  ݏ݉

Figure 7 Cylinder hitting side of the Toyota Rav4, refined B-pillar parts. 
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66899 shells 1838 solids

24685 shells 295 solids 

36768 shells 9424 solids

290160 shells 2869 solids

60876 shells 7007 solids

9684 shells 45 solids 

12515 shells 61 solids 

ݐ∆

ݐ∆2ݐ∆4ݐ∆8ݐ∆16ݐ∆32ݐ∆64

 ݐ∆

 ݐ∆32ݐ∆64

 ݐ∆8ݐ∆16

 ݐ∆2ݐ∆4

Figure 8 Subcycling partition of the Toyota Rav4. 
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Figure 9 Energies and cylinder contact force for the Toyota Rav4 side hitting simulations. 

ݐ = 0 

ݐ =  ݏ݉	150

Figure 10 Frontal impact of the Toyota Camry. 
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Summary 

Revised subcycling and multiscale algorithms implemented in LS-DYNA have been described in 
detail. The results from numerical examples indicate that there is a potential of reducing 
simulation time without significantly affecting the results, which is a motivation for further 
development. The near future will be devoted to understanding and improving contacts in 
subcycling, as this currently seems to be the most critical factor when it comes to stability of the 
method. In our only comparison of subcycling to that of selective mass scaling, see the Toyota 
Rav4 example, the latter came out as a winner. However, we don’t claim that the presented 
examples reflect the best use of the method but should be viewed as teasers, more investigations 
would be needed to find the appropriate application. Closely related to this is the question how 
subcycling and selective mass scaling will stand the test of time; the endless growth of finite 
element models and number of processors used for simulating them. The answer lies in the 
unforeseen future and it’s too early to draw definite conclusions, but we hope that the content of 
this paper will inspire LS-DYNA users to investigate the potential of the method within their 
own specific field. 
 
  

 ݐ∆

 ݐ∆8ݐ∆16

 ݐ∆2ݐ∆4

ݐ∆16ݐ∆8ݐ∆4ݐ∆2ݐ∆
1460807 shells 61541 solids

10352 shells 48 solids

62167 shells 1440 solids

38449 shells 1228 solids

31618 shells 0 solids 

Figure 11 Subcycling partition of the Toyota Camry. 
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Table 3 CPU timings for the Toyota Camry (in seconds). 

#CPU No subcycling Subcycling 
12 28942 28091 
24 14964 14158 
48 7578 7642 
96 4122 4028 
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