LS-DYNA: Status and Development Plan

John Hallquist, Yun Huang, Iñaki Çaldichoury, Jason Wang

13th International LS-DYNA User's Conference June 8-10, 2014

Outline

Introduction

Developments

- Recent enhancements John Hallquist
- Linear solver Yun Huang
- LS-PrePost: ICFD & EM Iñaki Çaldichoury
- Particle methods Jason Wang
- Conclusions

LSTC Products

LS-DYNA Application Areas

Development costs are spread across many industries

Automotive

Crash and safety NVH Durability FSI

Aerospace

Bird strike Containment

Crash

Manufacturing

Stamping

Forging

Consumer Products

Structural

Earthquake safety Concrete structures Homeland security

Electronics

Drop analysis Package analysis Thermal

Defense

Weapons design Blast response Penetration Underwater Shock Analysis

LS-DYNA - One Code, One Price, Strategy

"Combine the multi-physics capabilities into one parallel scalable code for solving highly nonlinear transient problems to enable the solution of coupled multi-physics, multi-scale, and multi-stage problems "

Accommodates Coupled Simulations

Multiple field equations are strongly coupled

One Code for Multiple Solutions

LS-DYNA

- Multi-physics
 - Structure + Fluid + EM + Heat Transfer + , ..
- Multi-stage
 - Implicit + Explicit
- Multi-scale
 - Failure predictions, i.e., spot welds
- Multi-formulations
 - linear + nonlinear +

Many Results

Manufacturing, Durability, NVH, Crash, FSI

Developments

Recent Enhancements John Hallquist Linear Solver Yun Huang LS-PrePost: ICFD & EM Iñaki Çaldichoury Particle Methods Jason Wang

FEA Solvers

Element Technology

- Contact
- Connection
- Material
- Forming
- Crash/Safety

Subcycling

- Partitions elements in groups based on their characteristic time step size
- Each partition is then integrated independently using a time step for the partition with the exception of special treatment at the shared element interfaces.
- Up to seven sub models are automatically generated each integrated in steps of 1, 2, 4, 8, 16, 32, and 64 times the smallest characteristic time step of the entire model.

Multi-scale

- User may manually designate parts to be integrated at specific time steps.
- Special treatment at the shared element interfaces.
- Approach is intended for detailed modeling of critical components in a large simulation model
- Different time scales save CPU time.

Advantages of new approach:

- Both methods are combined with mass scaling to avoid future sorting
- Permits element partitions with different time step sizes to be uniformly distributed across processors at the beginning of the simulation
 - Improved load balancing
- No additional user input than minor modifications to the subcycling control keywords
- Eliminates the complications related to multiple models running simultaneously on the same or separate cores
 - Complex input

Disadvantage: Stability issues related to subcycling

*CONTROL_SUBCYCLE_{K}_{L}

*CONTROL_SUBCYCLE_MASS_SCALED_PART_{SET}

Using different time steps in different subdomains, interface between subdomains by constraints indicated by red and due to contact by green.

Rav4 CPU timings (s)	Subcycling, K=64, L=4	Multi-scale, L=4	No subcycling
Contacts	133	133	288
Elements	194	206	636

B-pillar refined DT2MS=-1e-3 DT(B-pillar)=1.3e-4

Implicit rotational dynamics

Rotational dynamics: the study of vibration of rotating parts (turbine blades, propellers in aircraft and rotating disks in hard disk drives etc.).

The **deformation of rotating components** can cause damage as the rotational velocity increases.

A **resonant vibration** can lead to premature fatigue failure in rotating components, bearings and support structures.

The goal of the Rotational Dynamics in LS-DYNA is to study the above vibration-related phenomenon by considering the spin softening and gyroscopic effects.

Implicit rotational dynamics

Progress:

- A *CONTROL_IMPLICIT_ROTATIONAL_DYNAMICS card is added to LS-DYNA to do Rotational Dynamics analysis.
- Four types of elements: beam, shell, thick shell and solid, are available for the rotational dynamics studies.
- Vibration and modal analysis are verified using theoretical results or tested compared to 3rd party code results.
- Campbell diagram plotting
- Developments are ongoing:
 - Please contact Liping Li (<u>liping@lstc.com</u>) with feedback and requests for additional features.

Cosserat point element

- Brick element using Cosserat Point Theory
 - 8-node hexahedron,
 - 1-point solid element with hourglass type 10.
 - 10-node tetrahedron element
 - solid element type 16 with hourglass type 10.
 - Hourglass is based on a total strain formulation
 - Provides hight accuracy and insignificant mesh sensitivity

Cosserat point element

- Tip loaded cantilever beam
 - 5 mesh size levels (H=10, 5, 3.33, 2.5, 2 mm)
 - 3 distortion levels (a=-20, 0, 20 mm)
 - 2 load cases (horizontal (H) and vertical (V))
- Analytical tip displacement 0.21310 mm

Cosserat point hexahedron

R7.1

Worst errors for three hourglass formulations

Cosserat 10-noded tetrahedron

R7.1

- Plane strain
- Implicit with extremely tight convergence criterion
- Hyperelastic rubber (PR=0.4997)
- 5 different mesh orientations
- CPE3D10 vs. Type 16 (NIP=4)

- Three basic checks
 - Sensitivity of results with respect to mesh orientation
 - How far can the block be compressed
 - How many iterations and reformations are needed

Fully integrated tetrahedron

CPE tetrahedron

Cosserat 10-noded tetrahedron

R7.1

Check #2 and #3 - Robustness and Convergence CPE3D10

Max%comp.	Vol%error	lter/Ref
56.5	0.5	900/57
61.5	0.6	883/55
51.5	0.4	883/56
40	0.3	858/50
51	0.5	882/56

Type 16

Max%comp	Vol%error	lter/Ref
29	0.5	1562/110
35.5	1.6	983/61
32	0.5	1237/84
32.5	0.8	1031/66
35	0.6	1162/77

Single point pentahedron

- Implemented as element type 115
- Supports Flanagan-Belytschko viscous and stiffness hourglass types
- More robust than the 2 point integrated pentahedron element
- Degenerated single point hexahedron elements are sorted to type 115
- Supported for implicit calculations

*ELEMENT_BEAM_PULLEY

- General framework for pulley mechanism: rope / cable / belt / chain runs over a wheel
 → beam elements run over pulley node
- Available for truss beam elements
- Available for *MAT_ELASTIC and *MAT_MUSCLE, more materials could be implemented
- Automatic detection of adjacent beam elements

*ELEI	MENT_BEAM	I_PULLEY			
\$	PUID	BID1	BID2	PNID	•••
	101	0	0	20001	

*ELEMENT_BEAM_PULLEY

R7.1

 Increase accuracy for slipping and swapping by tightening slip condition tolerances, correcting velocity of swapped node, and changing internal precision from single to double for selected pulley variables

FEA Solvers

Element Technology

Contact

- Connection
- Material
- Forming
- Crash/Safety

New Option for Segment_based Cont **R7.1**

Based on Splitting Pinball Method, Belytschko and Yeh, 1993

 Able to treat numerous types of contact in a consistent way, including those posing difficulties for node-to-segment contact.

New option for segment_based contact

- This new option for computational airbag folding
 - is based on the penetration into the bilinear patch
 - conducts unified treatment of various contact types, including edge contact and node-to-surface contact etc..
- Is activated by setting "soft=2" and "depth=45"
- An intersection report is printed for the new option which provides information on interpenetrations

New option for segment_based contact

R7.1 – Folded intersection-free bag

dilipdemo8 (UNIT: kg-mm-ms-K) simfold step1 Time = 80

dilipdemo8 (UNIT: kg-mm-ms-K) simfold step1

dilipdemo8 (UNIT: kg-mm-ms-K) simfold step1 Time = 80

New option for segment_based contact

R7.1 – Deployment of the folded bag using various number of CPUs

dilipdemo8 (UNIT: kg-mm-ms-K) simfold step1 Time = 9.9992

time = 10.0

dilipdemo8 (UNIT: kg-mm-ms-K) simfold step1 Time = 29.999

time = 30.0

Mortar Contact

- Recommended for implicit simulations
- Beam contact with lateral surface area supported in AUTOMATIC_..._MORTAR contact
- In addition, bucket sort is made more efficient for large scale applications with the advent of R7.1.0

FEA Solvers

Element Technology

- Contact
- Connection
- Material
- Forming
- Crash/Safety

*MAT_ADD_COHESIVE

- Offers the possibility to use a selection of 3-dim. material models in conjunction with cohesive elements
- Cohesive elements (ELFORM = 19 and 20 of *SECTION_SOLID) can only be used with a small subset of materials (138, 184, 185, 186, 240). With this additional keyword, more material models can be used (mat-1, 3, 4, 6, 15, 24, 41-50, 81, 82, 89, 96, 98, 103, 104, 105, 106, 107, 115, 120, 123, 124, 141, 168, 173, 187, 188, 193, 224, 225, 252, and 255).
- Assumptions of inhibited lateral expansion and in-plane shearing

*MAT_TOUGHENED_ADHESIVE_POLYMER

R7.1- Material model 252 for crash optimized high-strength adhesives under combined shear & tensile loading

- Drucker-Prager-Cap type plasticity + rate dependence + damage + failure
- well suited for combination with *MAT_ADD_COHESIVE

yield surface of Drucker-Prager-Cap

50

40

30

20

10

0

Spannung t_N [MPa]

Experiment Sim. Dam-Model=1 Sim. Dam-Model=0

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Verschiebungssprung u_N [mm]

32

*CONSTRAINED_INTERPOLATION_SPOTWELD

- Model for self-piercing rivets, based on paper by M. Bier, 2013
- Replaces *CONSTRAINED_SPR3
- The algorithm does a normal projection from the two sheets to the spotweld node and locates all nodes within the user-defined diameter of influence

FEA Solvers

Element Technology

- Contact
- Connection
- Material
- Forming
- Crash/Safety

Material 34 bending stiffness for implicit

- Specify coating properties of fabric
- Pressurized coated membrane shown
- Solved implicit statics, not possible without bending stiffness

*MAT_DRY_FABRIC

R7.1

- *MAT_DRY_FABRIC (*MAT_214) is a shell element material used to model high strength woven fabric (e.g., Kevlar[®] 49) with transverse orthotropic behavior.
- candidate materials for use in structural systems where high energy absorption is required, like materials used in propulsion engine containment system, body armor and personal protections
- When fibers scissor, the stress update becomes less accurate and single and double precision solutions were inconsistent.

To address this, *MAT_214 track a-fiber and b-fiber directions independently.

*MAT_PAPER (MAT_274) for paperboard

R7.1

- Orthotropic elastoplastic model based on Xia (2002) and Nygards (2009)
- Used for modeling of paperboard, a strongly heterogeneous material, creasing simulation with delamination of individual plies
- Available for solid and shell elements
- Has shown to reproduce experimental data well

FEA Solvers

Element Technology

- Contact
- Connection
- Material
- Forming
- Crash/Safety

LS-DYNA in Stamping Simulation

- Lancing to alleviate metal thinning during forming
 - Progressive lancing: blank was gradually cut
 - Instant cut: blank was cut instantly
- New contact for guide pins and blank edge
 - Eliminate missing contact,
 - ignore blank thickness

- Iterative method
- Allow several stages, including forming, trimming, flanging, etc.

LS-DYNA in Stamping Simulation

- Two new features in springback compensation
 - After springback compensation, if there is small change to the part, then the die will be modified based on the change
 - Local smoothing in springback compensation.
- More friendly control of d3plot output:
 - Based on the punch position to its home distance
- Arbitrary polygon can be used in defining adaptive box
- Automatic close of open-ended trim curve loops to make trimming more robust
- MAT 122 was extended to 3D elements
 - Anisotropy in both elastic and plastic deformation
 - Applicable to composite materials

FEA Solvers

Element Technology

- Contact
- Connection
- Material
- Forming
- Crash/Safety

Energy-based pretensioner

R7.1

- Pull-in or belt load history of pretensioners vary with the size of the dummy, or if pretensioners are activated at different times.
- Different pretensioner models are needed for different crash scenarios when pull-in or belt load options are used to model the pretensioners.
- A pretension-energy based option is now available. This allows a single/unique pretensioner model to be used for various scenarios.

MAT_ADD_EROSION

R7.1

- MAT_ADD_EROSION application is extended to MAT_34, and
 - Shell formulation 18, 20, 21, 23, 24 and 54
 - Beam formulation 7 and 8
- Treatment of failed elements in an airbag model

CARD 6 of *AIRBAG_HYBRID

VNTOPT: bag venting option

EQ. 2: the areas of failed elements at failure times are added to the venting area defined by A23.

Thank You!

Linear Solvers Yun Huang

Frequency domain features

- FRF
- SSD
- Random vibration
- Random fatigue

- Response spectrum analysis
- BEM Acoustics
- FEM Acoustics

Application

- NVH of automotive and air craft
- Acoustic design and analysis
- Defense industry
- Fatigue of machines and engines
- Civil and hydraulic engineering
- Earthquake engineering

FRF

What is FRF?

- FRF, as a transfer function, expresses structural response to applied load as a function of frequency
- Property of structure system
- Dependent on frequency

Random vibration

Why do we need random vibration analysis?

- The loading on a structure is not known in a definite sense
- Many vibration environments are not related to a specific driving frequency
- Examples:
 - Wind-turbine
 - Air flow over a wing or past a car body
 - Acoustic input from jet engine exhaust
- Earthquake ground motion
- Wheels running over a rough road
- Ocean wave loads on offshore platforms

Input: PSD (Power Spectral Density), or SPL (Sound Pressure Level)

Output: D3PSD, D3RMS, NODOUT_PSD, ELOUT_PSD

New interpolation options on PSD curve

Three types of interpolation for PSD curves

Random vibration fatigue

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE

- Calculate fatigue life of structures under random vibration
- Based on S-N fatigue curve
- Based on probability distribution & Miner's Rule of Cumulative Damage Ratio

*MAT_ADD_FATIGUE

Card 1	1	2	3	4	5	6	7	8
Variable	MID	LCID	LTYPE	А	В	STHRES	SNLIMT	
Туре	Ι	Ι	Ι	F	F	F	Ι	
Default	none	-1	0	0.0	0.0	none	0	

$$N \cdot S^{m} = a$$

$$\log(S) = a - b \cdot \log(N)$$

$$R = \sum_{i} \frac{n_{i}}{N_{i}}$$

51

SSD

Why do we need SSD (Steady State Dynamics)?

- Harmonic excitation is often encountered in engineering systems. E.g. it is commonly produced by the unbalance in rotating machinery.
- The load may also come from periodic load, e.g. in fatigue test.
- The excitation may also come from uneven base, e.g. the force on tires running on a zig-zag road

Input: frequency load spectrum (complex variable)

Output: D3SSD, NODOUT_SSD, ELOUT_SSD

 $F(t) = F_0 \sin(\omega t + \phi)$

SSD Fatigue (ongoing development)

*FREQUENCY_DOMAIN_SSD_FATIGUE

- Calculate fatigue life of structures under steady state vibration (e.g. sine sweep)
- Based on S-N fatigue curve
- Based on Miner's Rule of Cumulative Damage Ratio
- Rain-flow counting algorithm for each frequency for one period

Example of SSD Fatigue

Č,

Loading condition

Freq (Hz)	Acl (g)	Duration (min)
16	0.5	10
20	0.5	10
25	0.5	10
31.5	0.5	10
2000	0.5	10

S	SN fatigue curve					
	σ (MPa)	Ν				
	100	8×10 ⁴				
	10	8×10 ⁵				
	1.	8×10 ⁶				
	0.1	8×10 ⁷				
	0.01	8×10 ⁸				

Fringe Levels Contours of Cumulative damage ratio max IP. value 1.605e-01 min=0.00549886, at elem# 844153 1.450e-01 max=0.160471, at elem# 846197 1.295e-01 1.140e-01 9.848e-02 8.299e-02 6.749e-02 5.199e-02 3.649e-02 2.100e-02 5.499e-03 The two ends are constrained on shaker table

BEM Acoustics

ATV and MATV

*FREQUENCY_DOMAIN_ACOUSTIC_BEM_ATV *FREQUENCY_DOMAIN_ACOUSTIC_BEM_MATV

- ATV calculates acoustic pressure at field points due to unit normal velocity of each surface node.
- MATV calculates acoustic pressure at field points due to vibration in eigen-modes.
- ATV / MATV is dependent on structure model, properties of acoustic fluid as well as location of field points.
- ATV / MATV is useful if the same structure needs to be studied under multiple load cases.

Example: ATV of car door model

MATV BEM is efficient

Cases	traditional BEM	MATV BEM
1 load case	2 h 39 m 50 s	4 h 40 m 56 s
10 load cases	26 h 38 m 18 s	4 h 41 m 10 s

D3ACS for BEM acoustics

*DATABASE_FREQUENCY_BINARY_D3ACS

Acoustic volume of compartment

Real part of surface pressure

Imaginary part of surface pressure

Incident waves for acoustic analysis

*FREQUENCY_DOMAIN_ACOUSTIC_INCIDENT_WAVE

Example: sound scattering on rigid sphere

FEM Acoustics

*FREQUENCY_DOMAIN_ACOUSTIC_FEM

- An alternative method for acoustics. It helps predict and improve sound and noise performance of various systems. The FEM simulates the entire propagation volume -- being air or water
- Compute acoustic pressure and SPL (sound pressure level)
- Output frequency range dependent on mesh size
- Available elements: hexahedron, tetrahedron, and pentahedron

Output: D3ACS; PRESS_PA; PRESS_DB

Response spectrum analysis

*FREQUENCY_DOMAIN_RESPONSE_SPECTRUM

Various mode combination methods

- $\circ~\text{SRSS}$ method
- \circ NRC Grouping method
- CQC method
- Double Sum methods
- $\circ~\text{NRL}\,\text{SUM}$ method
- Evaluate peak response of structure
- The input spectrum is dependent on damping (using *DEFINE_TABLE to define the series of excitation spectrum corresponding to each damping ratio).
- Application: *earthquake engineering,*

nuclear power plants design etc.

 Strain results are obtained by turning on STRFLG in *DATABASE_EXTENT_BINARY.
 Output: D3SPCM

Thank You!

EM, ICFD & LS-PrePost Iñaki Çaldichoury

In collaboration with: G. Mazars & G. Avrillaud: Bmax, Toulouse, France

MMF: High velocity forming process

- Forming limits increased
- Springback reduced
- Wrinkling reduced
- High reproducibility

Magneto crimping

Magneto forming

IWU

In collaboration with: Christian Scheffler, Chemnitz, Germany

In collaboration with: G. Mazars and G. Avrillaud: Bmax, Toulouse, France

Heating by Joule losses pressure applied for consolidation and maintained during cooling.

Rail gun simulation

- EM heats up a coil plunged in a kettle
- ICFD with conjugate heat transfer heats up the water

Water stream lines colored by the temperature level. EM Solver New Developments

Application: Conducting shells

Development : Allowing user to define conductive shells in 3D problems.

Advancement stage : Conducting shells can be used in the development version with the Eddy Current, Inductive heating and Resistive heating solvers. EM contact also available. SMP and MPP versions fully functional.

- Eddy currents i.e the combination of inductive diffusive effects is essentially a 3D effect which means that elements with thickness are usually required for correct solve. Consequently, up to now, only solid conductive elements were allowed, shells could be insulators only.
- However, some users have expressed the wish to be able to use conductive shells in 3D problems in order to maintain their associated mechanical and thermal properties.
- From the EM perspective, those shells are treated like "invisible" solids i.e the EM solver will build an underlying equivalent solid mesh to solve for the EM quantities.

EM forming using conductive shells vs solids

Impact against battery : shortcut study

Application: Resistive spot welding and others

Development: Calculation of a additional resistance term and local Joule heating due to contact occurring between two conductors.

- Resistive spot welding is a process in which contacting metal surfaces are joined by the heat obtained from resistance to electric current.
- Frequently encountered in the automobile manufacturing industry where it is used almost universally to weld metal sheets together (often automated process).
- Several formulas exist, often variation of Holm's law:

With ρ the material's resistivity and a the radius of the equivalent contact circle area.

Application: Resistive spot welding and others

Status: Available in the development version. Several methods for calculating contact Resistance available. See *EM_CONTACT_RESISTANCE card.

Local heating spot between electrodes and work piece due to Contact Resistance

Application: magnetic field lines

Development: Have the solver compute some magnetic field lines in the air based on user defined parameters for analysis and post treating purposes.

- The use of the BEM method i.e no air mesh does not allow the visualization of the EM fields in the air hence the interest of this new feature.
- From a starting point given by the user the field line is computed step by step using a explicit numerical integration scheme (RK4, DOP853).
- Approximation methods are available in order to speed up the computation of the second member of the magnetic field line equations :
 - multipole method
 - "multicenter" method: this method has been developed at LSTC
- This feature along with the multicenter/multipole methods are treated as a research project that could be used at a latter stage to compute and store efficiently the BEM matrix and thus speed up the computational time of the EM solver.

Application: Magnetic field lines

Current status: The magnetic field lines are now exported as individual lsprepost readable files at each output state, and will soon be integrated in the d3plot files. In a future development cycle, they will be automatically generated in lsprepost at any time without the user having to specify the output times before the run.

Future Developments

- Symmetry conditions
- Piezo electric materials
- Magnetic materials

ICFD Solver

- A CFD solver for incompressible flows (ICFD solver).
- Fully implicit.
- Double precision.
- SMP and MPP versions available. Highly scalable in MPP.
- New set of keywords starting with *ICFD/*MESH.
- Can run as a stand alone CFD solver.

Aerodynamics: study of turbulent flow around a car

Aerodynamics: study of flow vortexes around a wind turbine

Wave impact: study of pressure forces on a body

Time: 0.00 s

Aircraft wing filling: study of fuel repartition and filling time

Thoughts about FSI

- A widely approach used in engineering is to assume that the FSI problem is linear and to use two different software products and licenses.
- The solid work group finds the need for FSI simulation.
- The geometry is sent to the fluid group which builds a mesh and runs the fluid problem with a CFD solver until it reaches steady state.
- The fluid stresses together with the mesh is brought back to the solid group which handles data with scripts to convert it into the input data for the solid solver.
- The solid solver performs a modal analysis.

The LS-DYNA approach

- LS-DYNA has immense solid mechanics capabilities as well as a huge material library. It can run both in explicit and implicit and already has a thermal solver for solids.
- LS-DYNA offers the perfect environment in order to develop a CFD solver allowing complex fluid structure interactions as well as the solving of conjugate heat transfer problems.
- The set up of the coupled problem is greatly simplified with only a few additional keywords necessary.
- On top of the classic "loose" or "explicit" FSI coupling, the ICFD solver offers a state of the art strong coupling method which opens up new applications.
- "All in one code" strategy.

Aerodynamics: highly non linear FSI problem with flap oscillating in the wind (Turek benchmark problem)

Sloshing: Flap oscillating in partially filled tank

Time = 0, #nodes=2146228, #elem2d=274382, #elem3d=6403785

Artificial Heart valve: Strong pressure gradients forces leaflets open

Stamping and conjugate heat transfer: flow in serpentine causes dye to cool off

ICFD Solver New Developments

Application: Multiphase problems

Development: Being able to solve problems with two fluids of different densities (water+air).

Current Status: Implementation stage.

- Numerous applications such as lubrication, droplets, sloshing in closed tanks, etc.
- Two immiscible phases.
- Level Set approach for interface tracking.
- Continuous and discontinuous approach to model pressure jumps (surface tension).
- When the inertial effects of the second fluid can be simplified, the Free surface approach can be used.

Application: Multiphase problems

- Free surface approach: suitable for problems where the inertial effects of the lighter fluid may be neglected.
- Continuous approach: works in most multiphase problems.
- Discontinuous approach: used in problems where surface tension effects are important.

Application: Porous media

Development: Implementation of a generalization of the Navier Stokes equations that will allow the definition of sub-domains with different permeability/porosity.

Current Status: Validation stage. Available in the development version. See 4th card of ICFD_MAT.

Being ε , κ the porosity and the permeability of the medium respectively :

$$\begin{split} u_{i} &= \varepsilon u_{if} \quad \varepsilon = \frac{void \ volume}{total \ volume} \\ &\frac{\rho}{\varepsilon} \bigg[\frac{\partial u_{i}}{\partial t} + \frac{\partial \left(\frac{u_{i}u_{j}}{\varepsilon} \right)}{\partial x_{j}} \bigg] = -\frac{1}{\varepsilon} \frac{\partial (P \ \varepsilon)}{\partial x_{i}} + \frac{\mu}{\varepsilon} \frac{\partial^{2} u_{i}}{\partial x_{i}^{2}} + \rho g_{i} - D_{i} \end{split}$$
Ergun correlation :
$$D_{i} &= -\frac{\mu U_{i}}{\kappa} + \frac{1,75\rho|u|}{\sqrt{150}\sqrt{\kappa}\varepsilon^{1.5}} U_{i} \qquad \kappa = \tilde{\kappa} \text{ or } \kappa = \kappa_{ij}$$

Application: Porous media

Validation stage: analysis of references cases involving porous and fluid domains. Study of FEM solution and analytical/reference solutions

Application: Thermal problems

Development: Calculation of the convection coefficient "h" based on a rigorous approach for the estimation of the bulk temperature Tm.

Current Status: Available in the Development version.

$$h = \frac{q}{T_s - T_m}$$

With q the heat flux, Ts the temperature at the surface and Tm the "bulk temperature"

- Frequently used by engineers in cooling applications in order to approximate the effect of the fluid cooling on the structure (See *BOUNDARY_CONVECTION).
- The h can be found in empirical tables based on the fluid properties and the geometry of the pipe.
- However, for complex cases and geometries, it may be useful to run the CFD problem in order to check the value of the h along the pipe and to look for potential zones or pipe bents where the cooling becomes less or too efficient.

Application: External and internal aerodynamics with turbulence

Development: Adding more HRN and LRN laws of the wall for the turbulence models. Providing more tools for the boundary layer mesh generation.

Current status: Implementation stage

Future Developments

- A wave generator for free surface problems.
- Porous media with FSI problems.
- Specific porous media models for parachutes.
- Adaptive surface remeshing.
- Embedded approach for FSI problems.

LS-PrePost ICFD Post Treatments

- Since the official release of the ICFD solver in the R7.0 version, developments have been continuous and the number of users has been steadily growing.
- Currently, LS-PrePost offers some tools in order to post treat the results from the ICFD solver based on its solid mechanic counterpart.
- However, the requirements for CFD post treatment are often quite different and challenging. This meant that a radically new approach was needed for LS-PrePost to meet those specific requirements.
- LS-PrePost 4.2 will be the first version to incorporate post treatments specific to the ICFD Solver and to CFD solvers in general.

Object oriented structure:

Object oriented structure:

A right click on the initial Object (here the fluid volume) pops up a Menu which allows the user to create new objects

Modifying newly created object:

New object created : Splane

icfd ANSA Car Objects Time = 1.9823 MS SHELL 6 ▼ MS SOLID 10 🖌 IsoSurface 7 IsoSurface 8 IsoSurface 9 ▼ ▼ SectionPlane 10 ✔ VectPlot 11 All None Reverse Object Properties Position 3212.21; -0.018675; 4 Normal 0;1;0 Plane \checkmark Grid \checkmark Grid nx 40 Grid ny 50 Centd N1-12 3NPS CG. NmX 1P+NL Display Options NmY NmZ Mode Shade Color by Fluid velocity Fringe Contour \checkmark \checkmark Fringe Legend Transparency 0 Line Width 1 Min Scalar 0 Possible to display Vector AVG Scalar 57.333698 Max Scalar 114.667397 in "Grid Mode" to better see Velocity gradients Eigen First: 58 Inc: 1 Time: 1.9823 State: 58 1 Last: Animate Loop

30S -

It is also possible to post treat all ASCII files (See *ICFD_DATABASE family) dumped by the ICFD solver (forces, flux, point data etc)

- Currently, four type of objects can be created : Splane, isosurfaces, streamlines and vectors. Those are the most commonly used visualization tools in order to study flow patterns.
- More object types may be implemented in the future.
- The next step of development will include some new features for a more flexible and dynamic post treatment of results and data (easy extraction of values from the mesh, curve plotting options etc..)
- LS-PrePost 4.2 is currently in beta stage and is available to users eager to beta test its current functionalities.

Thank you for your attention !

Thank You!

Particle Methods Jason Wang

Meshless Particle Solvers

1) Particle Gas

- CPM Ideal Gas Law
- Particle Blast Real Gas Law
- 2) SPH
- 3) Discrete Element Method (DEM)
 - Discrete Element Sphere
 - Discrete Element Method with Bond
- 4) Coupled Multi-Physics Solvers

Particle Gas, CPM-Ideal Gas Law

- Modeled by ideal gas law: pV=nRT
- The volume of molecules is neglected
- maintain the same Maxwell-Boltzmann
 velocity distribution at thermal equilibrium
- Work for low pressure and moderate temperature

CPM/UP switch with Chambers

Time =

New: chambers becomes separated UP domain

Chamber 22

CPM/UP switch with Chambers

- CPM/UP Switch at 7 ms, curves A, B, C, D, E
- CPM all the way, curves F, G, H, I, J

Time

Particle Gas, Particle Blast-Real Gas Law

Particle Gas, Particle Blast–Real Gas Law

Air Particle

- Modeled by ideal gas law (CPM): pV=nRT
- High Explosive (HE) Particles
 - Modeled by real gases: p(V-b)=nRT
 - The co-volume effect is included
 - Work for high pressure and high temperature
 - Pressure drop sharply during adiabatic expansion

Particle Gas, Ideal and Real Gas Law

Particle Blast, Real Gas Law

Numerical Example

Particle Blast, Real Gas Law

Numerical Example

Blast simulation with sand

Particle Blast, Real Gas Law

Numerical Example

Simulation Results for 700mm Model

Center Deflection [mm]

Time[ms]

Enhancement of SPH

- **1. Friction Stir Welding**
- 2. SPH to SPH contact
- 3. SPH active region and new bucket sort

Friction Stir Welding

Double Sided FSW (Bobbin Tool) - 600 RPM, 1200mm/min Time = 0

Extended SPH thermal solver for SPH form 7 and 8

Double sided FSW 600 RPM, 1200 mm/min(plastic work and friction energy to heat) Courtesy of Kirk A. Fraser @ PredictiveEngineering

SPH Interaction

Multiple impacts with Keyword: SECTION_SPH_INTERACTION

Define the different type of interactions between SPH parts.

SPH Active Region & Better Bucket Sort

Discrete Element Method (DEM)

- **1. Discrete Element Sphere**
- 2. Discrete Element Method with Bond

Discrete Element Method (DEM)

Discrete Element Sphere

Dry Particle

Wet Particle

Discrete Element Method (DEM)

Discrete Element Sphere

DEM Mixer

Mixer 9.6L (kg-m-s) Time = 0

z x y

Node to Surface Coupling

*DEFINE_DE_TO_SURFACE_COUPLING

Tied Node to Surface Coupling

*DEFINE_DE_TO_SURFACE_TIED

Throwing a pie in the face, Courtesy of Kazuya, Lancemore

How to Form Other Shapes

Discrete Element Sphere with Bond Model

Emerge into Continuum Mechanics

- All particles are linked to their neighboring particles through Bonds.
- The properties of the bonds represent the complete mechanical behavior of Solid Mechanics.
- The bonds are independent from the DES model.
- They are calculated from Bulk Modulus and Shear Modulus of materials.
- Contact is disabled between bonded pair

DEM Bonds

DE Bond Type I

- Simple links, truss or beam, etc...
- Extended Peridynamics

DE Bond Type II

- Heterogeneous links to model continuum mechanics
- Extended features and will use regular *MAT properties

DE Bond TYPE I

• Every bond is subjected to:

- Stretching
- Shearing
- Bending
- Twisting
- The breakage of a bond results to Micro-Damage which is controlled by the critical fracture energy value J_{IC}.

DEM Bond TYPE I

Form different shapes of particles using DEM

LS-DYNA keyword deck by LS-PrePost Time = 0 DE Paste (microgm-micron-sec) Time = 0 CONTROL C
DEM TYPE II

Heterogeneous BOND (HBOND) Continuum Particle Method

- ***DEFINE_DE_HBOND** connects two spheres with a heterogeneous bond.
- *MAT properties are used to determine the stiffness of the bonds automatically.
- Strains, stresses, and history variables are computed for each particle independently.
- *INTERFACE_DE_HBOND specifies various damage/failure models.
- Self contact will be activated for broken bonds.

One Particle Method

From "Continuum" to "Discrete"

- One model setup
- One solver
- Same material models
- Multi-physics: *Continuum Mechanics Damage Mechanics Fracture Mechanics Discrete Mechanics*
- Built-in self contact
- Coupling with other FEM and particle methods

HBOND Verification

A simply-supported beam under a body force

- FEM & DEM models are created for one half beam with the symmetric boundary conditions in the middle.
- The displacements & stresses obtained by the DEM are very close to those by the FEM.
- No boundary effects.

HBOND Verification

Specimen under Tension

HBOND Verification

Specimen under Compression without Pre-Notch

HBOND Micro-Mechanics

***DEFINE_DE_HBOND** creates a heterogeneous bond between different spheres.

***INTERFACE_DE_HBOND** defines various damage/failure models for the heterogeneous bonds based on the material properties of the connecting particles.

Various heterogeneous bonds

SiC/AI Metal Matrix Composite

DEM for Material Design

Material Properties		AI	9	SiC	
Density: [kg/m ³]		2,700) 3,	3,100	
Young's modulus [GPa]		71.7	Z	427	
Poisson's ratio:		0.33	0	0.17	
Failure Energy Rate: [kN/m]		40		15	
Average Particle size: [um]		-		13	
LS-DYNA Results	7% vol		25% vol		
	Exp.	Num.	Exp.	Num.	
Young's modulus [GPa]	84.2	80.6	113.3	113.5	
Tensile strength [MPa]	568.6	545.0	623.6	641.3	
Limit strain	1.8%	1.9%	1.2%	1.4%	

HBOND

A Reinforced Bar under Four-Point Bending

*DEFINE_DE_HBOND bonds all parts.

*INTERFACE_DE_HBOND defines different de-bonding criteria between parts

De-bonding process

Comparison between DEM & Experimental Results

Coupled Multi-Physics Solvers

Node to Node Coupling

SPH to SPH Contact

Tank sloshing with fluid and vapor (node to node contact) Density ratio ~ 1000

Node to Beam Coupling

DES to Beam Contact

Node to Surface Coupling

DES to Segment Contact

Particles (kg-m-s) Time = 0

Node to Volume Coupling

DES to ALE Contact

Powder(DES)

Coupled Multi-Physics Solvers

Thank you!

Thank You!

Summary

- LSTC is working to be the leader in cost effective large scale numerical simulations
 - LSTC is providing dummy, barrier, and head form models to reduce customer costs.
 - LS-PrePost, LS-Opt, and LS-TaSC are continuously improving and gaining more usage within the LS-DYNA user community
 - LSTC is actively working on seamless multistage simulations in automotive crashworthiness, manufacturing, and aerospace
- The scalable implicit solver is quickly gaining market acceptance for linear/nonlinear implicit calculations and simulations
 - Robustness, speed, accuracy, and scalability have rapidly improved
 - Developments:
 - Acoustics
 - Rotational dynamics

Future

- LSTC is not content with what has been achieved
- New features and algorithms will be continuously implemented to handle new challenges and applications
 - Electromagnetics,
 - Acoustics,
 - Compressible and incompressible fluids
 - Isogeometric shell elements and NURB contact algorithms
 - Discrete element methodology for modeling granular materials, failure, etc.
 - Simulation based airbag folding and THUMS dummy positioning underway
- Multiscale capabilities are under development
 - Subcycling
- Hybrid MPI/OPENMP developments are showing significant advantages at high number of processors for explicit and implicit solutions

Thank You!

10th European LS-DYNA Users Conference

