Numerical Investigation of Phase Change and Cavitation Effects in Nuclear Power Plant Pipes
In the nuclear and petroleum industry, supply pipes are often exposed to high pressure loading which can cause to the structure high strains, plasticity and even in the worst scenario failure. Fast hydraulic transient phenomena such as Water Hammers (WHs) are of this type. It generates a pressure wave that propagates in the pipe causing high stress. Such phenomena are of the order of few msecs and numerical simulation can offer a better understanding and an accurate evaluation of the dynamic complex phenomenon including fluid-structure interaction, multi-phase flow, cavitation effects … For the last decades, the modeling of phase change taking into account the cavitation effects has been at the centre of many industrial applications (chemical engineering, mechanical engineering, … ) and has a direct impact on the industry as it might cause damages to the installation (pumps, propellers, control valves, …). In this paper, numerical simulation using FSI algorithm and the two One-Fluid Cavitation models “Cut-Off” and “HEM” of WHs including cavitation effects is presented.
https://www.dynalook.com/conferences/13th-international-ls-dyna-conference/fluid-structure-interaction/numerical-investigation-of-phase-change-and-cavitation-effects-in-nuclear-power-plant-pipes/view
https://www.dynalook.com/@@site-logo/DYNAlook-Logo480x80.png
Numerical Investigation of Phase Change and Cavitation Effects in Nuclear Power Plant Pipes
In the nuclear and petroleum industry, supply pipes are often exposed to high pressure loading which can cause to the structure high strains, plasticity and even in the worst scenario failure. Fast hydraulic transient phenomena such as Water Hammers (WHs) are of this type. It generates a pressure wave that propagates in the pipe causing high stress. Such phenomena are of the order of few msecs and numerical simulation can offer a better understanding and an accurate evaluation of the dynamic complex phenomenon including fluid-structure interaction, multi-phase flow, cavitation effects … For the last decades, the modeling of phase change taking into account the cavitation effects has been at the centre of many industrial applications (chemical engineering, mechanical engineering, … ) and has a direct impact on the industry as it might cause damages to the installation (pumps, propellers, control valves, …). In this paper, numerical simulation using FSI algorithm and the two One-Fluid Cavitation models “Cut-Off” and “HEM” of WHs including cavitation effects is presented.