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Abstract 
 
This paper presents a new particle method in LS-DYNA for the severe deformation and failure 
analyses of solid mechanics problems. The new formulation is first established following a 
standard meshfree Galerkin approach for a solving of the partial differential equation of linear 
elastic problems. A smoothed displacement field is introduced to the Galerkin formulation and 
leads to a regularized smoothed strain approximation. The resultant smoothed/regularized strain 
formulation can be related to the residual-based stabilization method for the elimination of zero-
energy modes in the conventional particle methods. The discretized system of equations are 
consistently derived within the meshfree Galerkin variational framework and integrated using a 
direct nodal integration scheme. The linear formulation is next extended to the large deformation 
and failure analyses of inelastic materials. In the severe deformation range, an adaptive 
Lagrangian or Eulerian kernel approach can be preformed to reset the reference configuration 
and maintain the injective deformation mapping at the particles. Several numerical benchmarks 
are provided to demonstrate the effectiveness and accuracy of the proposed method. 
 
Keywords: particle; convex approximation; nodal integration; inelastic 
 

 
1. Introduction 

 
Meshfree, or particle methods, offer many numerical advantages over the conventional finite 

element and finite difference methods in modeling large deformation, moving discontinuity and 
immersed problems in solid and structural applications [1]. Those methods were also found to be 
very effective in reducing the volumetric locking and shear locking in the solid and structural 
analyses [3]. The earliest development in the meshfree methods was the Smoothed Particle 
Hydrodynamics (SPH) method. The foundation of the SPH method is the kernel estimate 
introduced by Monaghan [6]. In this method, partial differential equations are transformed into 
integral equations and the kernel estimate then provides the approximation to estimate the field 
variables at discrete particles. Since the functions are evaluated only at the particles, the use of a 
mesh is no longer required. The ability to handle severe deformations without the use of meshes 
in fluid-like motion allows the SPH method to be applied to problems that historically have been 
reserved for Eulerian approaches [7-8]. Nevertheless, a direct application of the SPH method to 
                                                 
* Corresponding author. Tel: +1 925-2454529; Fax: +1 925-4492507. 
 E-mail address: ctwu@lstc.com (C. T. Wu). 



Session: Fluid Structure Interaction 13th International LS-DYNA Users Conference 

1-2 

solid and structural analyses suffers from several numerical deficiencies, namely the lack of 
approximation consistency, tension instability, diffusion in material history information, 
presence of spurious or zero-energy modes and difficulty in enforcing the essential boundary 
conditions [9-10].  

The Reproducing Kernel Particle method (RKPM) [10] introduced a correction function that 
restores the first-order consistency of the kernel approximation in the SPH method and improves 
the solution accuracy for finite domain problems. Tensile instability [12] is a major numerical 
defect in the SPH method that exhibits numerical fracture and artificial voids in the solid and 
structural applications. Tension instability was first identified by Swegle et al. [13] in a Von 
Neumann stability analysis and was later found to be related to the Eulerian kernels used in the 
Lagrangian description of motion [14]. A byproduct of Eulerian kernels in SPH is the diffusion 
problem in tracking the material history information during the deformation. Although an 
adoption of Lagrangian kernels can be used to alleviate the tension instability and reduce the 
diffusion problem [15], it suffers excessively from the intrinsic defects of purely Lagrangian 
methods and limits the magnitude of distortions in the severe deformation analysis. The presence 
of spurious or zero-energy modes in SPH or other Galerkin-based meshfree methods is mainly 
due to the rank instability caused by the under-integration of the weak forms inherent in the 
central difference formula from the nodal integration. Several meshfree nodal integration 
methods [16] have been developed to eliminate the spurious zero or near-singular modes due to 
the rank instability using the direct nodal integration scheme. Chen et al. [18] proposed a 
Stabilized Conforming Nodal Integration (SCNI) method in which a strain smoothing scheme 
was introduced as a stabilization process for the nodal integration. A common feature of the SPH 
stress point and the SCNI methods is their integration of the discretized system of equations over 
the background, or integration, cells, thus limiting their ability to model severe deformation 
problems.  

The robustness and accuracy of the meshfree or particle methods in the solid and structural 
analyses are also greatly affected by their numerical treatments of the boundary conditions. Since 
the Kronecker-delta property does not hold in the conventional meshfree approximations such as 
the SPH kernel approximation, Moving Least-squares (MLS) or Reproducing Kernel (RK) 
approximations, special techniques [3] are needed to impose the constraint and the essential 
boundary conditions in the meshfree methods. Alternatively, several convex approximations 
were introduced [20] to simplify the essential boundary condition treatment in the meshfree 
methods. Meshfree convex approximations guarantee the unique solution inside a convex hull 
with a minimum distributed data set and possess the Kronecker-delta property at the boundaries, 
therefore avoid any special treatment on the essential boundaries. It has been shown [21] that the 
meshfree convex approximation exhibits smaller lagging phase and amplitude errors than the 
meshfree non-convex approximation in a full-discretization of the wave equation. Several 
meshfree and meshfree-enriched Galerkin formulations [22] using the meshfree convex 
approximation have been presented for the analyses of immersed composites, rubber-like 
materials in large deformation, and multi-scale acoustic waves.  

This paper presents an alternative particle formulation [10] that provides a stable and accurate 
solution for problems in the solid mechanics applications. Since the formulation is derived based 
on a smoothed displacement field within the meshfree Galerkin variational framework and the 
discretized system of equations are integrated at the particles, we refer this formulation as the 
Smoothed Particle Galerkin (SPG) method. The reminder of the paper is outlined as follows: In 
the next section, we define the boundary-value problem of the linear elasticity and formulate the 
meshfree Galerkin method. In Section 3, we present a Smoothed Particle Galerkin formulation 
and its strain regularization. In Section 4, the Smoothed Particle Galerkin formulation is 
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extended to the large deformation analysis of inelastic materials with the adaptive Lagrangian or 
Eulerian kernel approach. Section 5 describes the SPG explicit dynamic formulation. The       
LS-DYNA input format is also provided in the same section. Several numerical examples are 
presented in Section 6 to illustrate the accuracy and robustness of the method. Final remarks are 
drawn in Section 7. 
 

2. Preliminaries 
 

To better illustrate the fundamental concept of the present method, we first consider the static 

response of an elastic body under plain strain conditions. We assume the domain  ℝ2 be a 
bounded polygon with the smooth boundary  . Also, let u be the displacement and further 
assume that the Dirichlet boundary conditions are applied on D  and the Neumann boundary 

conditions are prescribed on N . For a prescribed body force    ΩL2Xf , the governing 

equilibrium equation and boundary conditions are written as 

 

 

in   Ω

      on  
   ;  

   on  
D

D N D N
N

  

 
      

  

 σ u f     

u g

σ n t

          (1) 

where g  is the prescribed displacement on D , t is the prescribed traction, n is the outward unit 

normal to the boundary N  and  stands for the divergence operator. The infinitesimal strain 

tensor  uε  is defined by 

   1

2
s  ε u u u u                      (2) 

where   is the gradient operator. In the case of linear isotropic elasticity, the Cauchy stress 
tensor σ  and strain tensor ε  have the following relationship 

      : 2  tr   σ C ε u ε u ε u I                       (3) 

where C is the fourth-order elasticity tensor and I is the identity tensor. The positive constants   

and   are the Lamé constants such that  21,   with 210    and   ,0 . The Lamé 
constants can be related to the Young’s modulus E and the Poisson ratio v by 

    vv

vE

v

E

211
       ,

12 



                    (4) 

The variational form of this problem is to find the displacement 

  g 1 :  on D     u V v H v g  such that for all Vu  

   : : 0
N

s s d d d  
  

         u C u u f u t                (5) 

where the space  1
0 V H  consists of the functions in the Sobolev space  1 H  which 

vanishes on the boundary in the sense of traces and is defined by 

   1: ,     Don    V v v H v 0                    (6) 
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By the Lax-Milgram theorem, there exists a unique solution gu V to the problem. Moreover, let 
g 2 u V H {  2L f ,  2

1 1=  where 
D

 g w w H , and 2=
N

t w where  1
2  w H }, 

we have the following elliptic regularity estimate for the linear elasticity posed in a convex 
domain with a polygonal boundary: 

 1 1 22 1 0 2 1
C    u u f w w            (7) 

where 
m

    is the Sobolev norm of order m as defined in a standard way. The constant 1C  in 

Eq.(7) does not depend on   and  .  
For simplicity, we assume the homogenous Dirichlet boundary conditions in the following 

derivation. The standard meshfree Galerkin method is then formulated on a finite dimensional 
subspace h V V  employing the variational formulation of Eq. (5) to find hh Vu   such that 

   : : 0  
N

s h s h h h h hd d d    
  

              u C u u f u t u V  (8) 

 

3. A Smoothed Particle Galerkin Formulation for Linear Elasticity 
 

This section describes the derivation of the smoothed particle Galerkin formulation for the 
analysis of linear elasticity problems using a direct nodal integration scheme. For a particle 

distribution noted by an index set  NP

IIIZ 1 X , we approximate the displacement field using the 

meshfree approximation constructed by either the conventional meshfree approximation methods 
or the convex approximation methods to give 

     



NP

1I
II

h Ψ XXuuXXu   ˆ~                  (9) 

where NP is the total number of particles, and  XIΨ , I=1,…NP can be considered as the shape 

functions of the meshfree approximation for the displacement field  Xuh . With the meshfree 
shape functions, we can define the corresponding finite-dimensional approximation space to be 

   XXV  and : II
h ZIΨspan . In general, Iu~  is not the particle displacement and is 

often referred to as the “generalized” displacement of particle I in the meshfree Galerkin method. 
Using Eq. (9), the particle displacement at particle I can be expressed by  

    I

NP

1J
JIJI

h Ψ uuXXu ˆ~ 


                        (10) 

where  III Y,XX  is the nodal coordinate of particle I. If the meshfree shape functions  XIΨ  
are constructed using a convex approximation, then they have the Kronecker-delta property on 
the boundary, i.e. ˆ  for I I I  u u X . In this study, the first-order convex approximation is 

constructed by the GMF method using the inverse tangent basis function and the cubic spline 
window function. Giving a convex hull Convex( IZ ) of the node set   2 NP1,I,Z II X  
defined by 

  




 


NP

1I
IIIII

NP

1I
III Z0,α1,α,ααZConvex XX              (11) 
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the GMF method is used to construct a convex approximation of a given (smooth) function 
 Xu  in the form of Eq. (9) such that the shape function   lI ZConvexΨ  :  satisfies the 

following linear polynomial reproduction property 

   II

NP

I
I ZConvexΨ  X  XXX 



 
1

           (12) 

With the meshfree convex approximation, we can also define a 1
0H -conforming subspace for 

the approximation of the displacement field to be   I
0

II
h ZIΩ,Ψ suppΨ     span:V . An 

evaluation of the weak form in Eq. (8) using the meshfree approximation and the direct nodal 
integration scheme leads to the spurious, or zero-energy, modes. This is a consequence of the 
fact that the field variables and their derivatives are calculated at the same points such that an 
alternating field variable has a zero gradient at the particles [25]. The almost vanishing first 
derivatives at the nodes result in a discrete weak form that does not adequately reflect the strain 
energy and its contribution to the stiffness matrix is severely underestimated [16]. In order to 
eliminate the presence of the spurious or zero-energy modes caused by the direct nodal 
integration scheme, the smoothed particle Galerkin method introduces a smoothing of the 
displacement field defined by 

      dΩ;Ψ YuXYXu ˆ~
                          (13) 

where Y denotes the position of the infinitesimal volume dΩ. The discrete form of Eq. (13)
becomes 

 



NP

1J
JIJI Ψ uXu ˆ~                           (14) 

where  IJΨ X
~

, J=1,…NP are the displacement smoothing functions for particle I. It is assumed 

that the displacement smoothing functions Ψ
~

 also satisfy the linear polynomial reproduction 
condition. In another words, the smoothed displacement field  Xu  equals to  Xû  for 

homogeneous displacement states. For a sufficiently smoothed displacement field  Xû , the 

integral form in Eq.(13) can be expressed in terms of the gradients of  Xû  by expanding  û X  

into a Taylor series to yield 

                 ˆ ˆ ˆ ˆ ˆ(2) (3)3(2) (2) (3)1 1

2! 3!
          u Y u X u X Y X u X Y X u X Y X   (15) 

where ( )n  denotes the nth-order gradient operator and  n  denotes the nth-order inner product. 

The symbol   nξ designates the n factor dyadic product     ξξξ   for a vector ξ. Substituting 
Eq.(15) into Eq.(13) leads to the following smoothed displacement field in terms of the gradients 

           

       

         

2(2)

(4)3(3)

ˆ ˆ

ˆ             

ˆ             

(2)

(3)

Ψ ; dΩ Ψ ; dΩ

1
Ψ ; dΩ

2!
1

Ψ ; dΩ O
3!

 





  

 

   

 











u X Y X u X Y X u X Y - X

Y X u X Y - X

Y X u X Y - X Y X

 





        (16) 
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Truncating the Taylor series in Eq.(16) after the quadratic term and using the linear 
polynomial reproduction condition of the displacement smoothing functions Ψ

~
 leads to 

           

       

           
       

   

ˆ ˆ

ˆ             

ˆ ˆ            

ˆ               

ˆ         

(2)2(2)

(2)2(2)

(2

Ψ ; dΩ Ψ ; dΩ

1
Ψ ; dΩ

2!

Ψ ; dΩ Ψ ; dΩ Ψ ; dΩ

1
Ψ ; dΩ

2!

Ψ ; dΩ

 



  





  

 

  

    
 

 

 



  















u X Y X u X Y X u X Y - X

Y X u X Y - X

u X Y X u X Y X Y X Y X

u X Y X Y - X

u X Y X

 



  



        

       )

ˆ  

ˆ ˆ         

(2)2)

2(2

1
Ψ ; dΩ

2! 

   
 

  




u X Y X Y - X

u X u X η X



  (17) 

with      dΩ;Ψ
2!

1 (2)X-YXYXη
~  defines the position dependent coefficients. In a nodal 

integration,   2hI Xη  that is proportional to a length squared where h denotes a characteristic 

length scale of the discretization. Note that with the convex approximation, we have 
     ˆ  and    for    on  I I I I  η X 0 u X u X X . A modified weak form is obtained by neglecting 

the higher-order gradient terms in strains to find hVuˆ , such that  

    hh la Vuuuu  ˆ  ˆˆ,ˆ                           (18) 

where 

         
   

ˆ ˆ ˆ ˆ ˆ ˆ, : : : :

ˆ ˆ ˆ ˆ               , ,

(2) (2)h s s

h h
stan stab

a d d

a a

  

 
 

  

 

    u u u C u u C u

u u u u
      (19) 

    ˆ ˆ ˆ ˆ :
N

2l d d d   
  

          u u f u t u η f              (20) 

where h
stana  is the standard bilinear form defined in Eq. (8) and 

     
 

ˆ ˆ ˆ ˆ, : :

1
ˆ ˆ ˆ: :

2

(2) (2)h
stab

(2) (2) (2)

a d 


 

 

u u u C u

u η u u η

 

    
                   (21) 

defines the stabilized bilinear form which corresponds to the variation of the stabilized potential 
energy. The stabilization terms containing the first derivatives of the displacements are also 
omitted in Eq.(21) by considering their zero gradients at the particles. In the standard isotropic 
linear elastic case, coercivity of the bilinear form  ,ha  on hh VV  follows immediately from 
one of the Korn’s inequalities to give 
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      

 

22 22

1 11 0 0 0

1

min

2 1 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ                    , ,

ˆ ˆ ˆ                    , ,  , 0,  

(2)s s

h h
stan stab

h h

c c

c
a a

c a c c



    
 

 

  

u u u u

u u u u
C

u u u V

  

                 (22) 

where min  is the smallest eigenvalue of C. In other words, the stabilization term can be 
considered to enhance the coercivity of the formulation in the particle integration method. Using 
the Cauchy-Schwarz inequality and the first-order meshfree interpolation property [20] for the 

displacement smoothing function Ψ
~

,  ,ha  also can be bounded by 

         
       

     
   

1/2 1/22 2

max 0 0

1/2 1/22 2

3 0 0

max 4 51 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ, : : : :

ˆ ˆ ˆ ˆ              

ˆ ˆ ˆ ˆ                   

ˆ ˆ ˆ ˆ                ,   

(2) (2)h s s

3 4 5

a d d

d d

c h d h d

c c c ,c ,c





 

 

 

  

   


    


 

 

 

 

   

 

u v u C v u C v

C ε u ε v

ε u ε v

C u v u v ˆ ˆ h0     ,    u v V

    (23) 

where max  is the largest eigenvalue of C. The third inequality is obtained using a simple triangle 

inequality for the strain component of norm  
0

ˆˆ uε defined in L2 space [22]. Since Eq. (21) 

includes non-zero second derivatives of the displacements, it serves as a stabilization term and 
appears like the residual-based stabilization method [16] for the nodal integration in the Element-
Free Galerkin method. The numerical evaluation of Eq. (21) using a direct nodal integration 
results in a symmetric stiffness matrix. Compared to the residual-based stabilization method, the 
stabilization parameter in Eq. (21) is derived in a consistent manner without additional 
prescription of its value. However, the integration of Eq. (21) involves the second derivatives 
and is expensive for the assembly of linear systems in multi-dimensional problems. In this study, 
an alternative way to implement the smoothed displacement field in Eq. (8) without the 
involvement of second-order derivatives in the shape functions is introduced. This is to use the 
integral form in Eq. (13) instead of the gradient form in Eq. (17). By substituting Eq. (10) into 
Eq.(14), we have the discrete smoothed displacement field evaluated at the particles by 

         

 

 



  





NP

1K
KIK

NP

1K

NP

1J
KIJJK

NP

1J

NP

1K
KJKIJ

NP

1J
JIJI ΨΨΨΨΨ

uX

uXXuXXuXu

~            

~~~~ˆ~


     (24) 

where the smoothed meshfree shape function  IK X  is defined by 

     



NP

1J
IJJKIK ΨΨ XXX

~
:                           (25) 

Now the relationships between the different nodal position systems can be defined through 
Eqs. (10), (14) and (24), and are shown in Figure 1. 
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Figure 1: The relationships between different nodal position systems. 

The smoothed meshfree shape function constructed by the meshfree convex approximation 
continues to satisfy the Kronecker-delta property on the boundary, 

      gKKI

NP

1J
IJJKIK ΨΨ 



XXXX    
~               (26) 

Using Eq. (9), we have the admissible test functions for the variation equation obtained by 

   



NP

1I
II

h Ψ uXXu ~                          (27) 

By introducing the displacement and strain approximations into Eq. (8), the discrete governing 
equation is integrated using a direct nodal integration to give 

extTT δδ fUUKU
~~~                                (28) 

    0

1
KK

NP

K
JK

T
IJ

T
IIJ VdΩ XCBXBCBBK 



                     (29) 

        KK

NB

K
KIKK

NP

K
KIΓ II

ext
I LΨVΨdΓΨdΨ

N

XtXXfXtff 





1

0

1

    (30) 

where 0
KV  denotes the initial volume of particle K. In Eq. (30) NB denotes the number of 

boundary nodes and Lk is the length associated with the boundary particle along the global 
boundary. To explore the concept of the method as well as to improve computational efficiency, 

we simply consider    XX II ΨΨ ~
 in this study. From Eq. (14), we have  

      
 


NP

1K
KIK

NP

1K

NP

1J
KIJJKI ΨΨ uXuXXu ~~                    (31) 

or in matrix form 

UAU
~  or  UAU -1~

                          (32) 
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where vector  NPuuuU ~,,~,~~
21   contains the problem unknowns for the generalized 

nodal displacements. A is a transformation matrix defined by 

     IXXIXA 



NP

1K
KJIKIJIJ ΨΨ                     (33) 

Substituting Eq. (32) into the variation form of Eq. (28) leads to the following discrete 
equation to be solved for the linear elastic analysis 

extTT fAUKAA --1-                              (34) 

or equivalently 

extTT fAUKA -- ~
                              (35) 

 
4. Large Deformation Analysis for Inelastic Material and Adaptive 

Lagrangian/Eulerian Kernel Approach 
 

The smoothed meshfree Galerkin formulation presented in the previous section is now 
extended to the nonlinear analysis of plastic materials. In light of the rate constitutive equations 
and the derivatives with respect to the spatial coordinates, it is advantageous to use the 
variational formulation of the equation of motion in terms of the updated Lagrangian formulation 
in the following derivation. 

In a quasi-static problem, the variational formulation of the updated Lagrangian formulation 
with reference to the current configuration x  is expressed in an index form by 

  0  
dtudfud

Nxx
iiiiijij                (36) 

where σij is the Cauchy stress defined at the current configuration. We also have iii uXx  that 

relates the spatial coordinate x to the reference coordinate X. Linearizing of Eq. (36) leads to the 
iterative equations 

  ,,   
dtudfuduTudC

Nxxx
iiiilkijkljiklijklij   (37) 

where  
*lg
ijkl

a
ijklijkl CCC                                 (38) 

 iljkjlikikjljkiljlijkl ikC  
2

1*                (39) 

jlikijklT                                   (40) 

Cijkl is the material tangent response tensor, lga
ijklC  is the algorithmic tangent response tensor for 

the infinitesimal plasticity. Substituting the discrete meshfree approximation in Eq. (24) and its 
variation into Eq. (37) leads to the discrete iterative equation given by 

  v
1n

Tv

n
v

1n
T δδ 



  RUUKU
~~~ 1

1                         (41) 



Session: Fluid Structure Interaction 13th International LS-DYNA Users Conference 

1-10 

The notation  vn 1 represents the function to be computed in the v-th iteration during (n+1)th 

time incremental step. Using Eq. (32), the discrete iterative equation can be written in the 
smoothed nodal position system as in the linear analysis to yield 

  v
1n

-Tv

n
v

1n
-T






  RAUAKA

1

1
1                        (42) 

or equivalently 

  v
1n

T-v

n
v

1n
T-





  RAUKA
1

1

~
                         (43) 

As Lagrangian simulation proceeds, an adaptive Lagrangian/Eulerian kernel scheme is 
performed frequently to avoid the negative Jacobian in the Lagrangian calculation. In each 
adaptive step material quantities are computed at the particles without the usage of any 
background cells. Since the adaptive Lagrangian/Eulerian kernel approach does not involve 
remeshing and the particle computation is evaluated node-wisely, the material quantities at all 
particles are maintained in the Lagrangian setting and thus require no remap procedures. If we 
denote the variables before and after each adaptive time step to be superscripted with “–“and “+” 
respectively, the derivatives of the material meshfree shape functions with respect to the spatial 
coordinates right before (k+1)-th adaptive time step can be expressed by 

      1

1



























 k

jik
j

I
k
j

k
j

k
j

1k
I

1k
i

1k
I1k

iI, f
x

-Ψ

x

x

x

-Ψ

x

-Ψ-Ψ
xx

x              (44) 

where 
1

1










k
j

k
jk

ji x

x
f defines the inverse of the incremental deformation gradient from k-th 

adaptive time step. At (k+1)-th adaptive time step, the new derivatives of the material meshfree 
shape functions becomes 

   
i

1k
I1k

iI, x

Ψ
Ψ







 x

x                          (45) 

 
5. Explicit Dynamic Formulation and LS-DYNA Input Format 

 
5.1 Explicit dynamic formulation 
 

The explicit dynamic version of the smoothed particle Galerkin formulation can be easily 
obtained by considering the inertial effect and following the previous quasi-static derivation to 
yield 

 int1 ffAUMAA  ext-T-T                         (46) 

or equivalently 

 int~
ffAUMA  extT-T-                          (47) 
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where U  and U
~

 contain the vector of particle accelerations evaluated in the smoothed nodal 
position system and generalized nodal position system, respectively. M is the consistent mass 
matrix given by 

    IXXM 0
0

1
NNJ

NP

N
NIIJ VΨΨ



                        (48) 

where 0  is the initial density. Eq. (46) also can be rewritten as 

 intffAUM  ext-T                        (49) 

with 1 MAAM -T defines a smoothed consist mass matrix. In an explicit dynamic analysis, a 
row-sum mass matrix is usually considered which is only computed once without involving the 
matrix inversion at each time step. The smoothed consist mass matrix is now replaced by the 
row-sum mass matrix RSM  to give 

  
NP

J
MLKM

T
IK

NP

J
IJ

RS
I

1AMAMM                     (50) 

Since no remap procedures are considered in the adaptive Lagrangian kernel scheme, the 
particle mass is taken to be the same during the explicit dynamics analysis. The current particle 
volume required for the calculation of the internal force is updated according to the continuity 
equation given by 

00
I

I
I VV




                                (51) 

   



NP

J
IJJIII

I Ψ
dt

d

1
,

~~ xuu x
 

               (52) 

5.2 LS-DYNA input keyword 
 

The new particle formulation is assigned an element type of 47 and can be accessed with an 
option of _SPG in the *SECTION_SOLID keyword card. It is implemented in such a way that 
one can easily take a finite element model and change some parts into SPG particles.  

The input format is as follows: 

*SECTION_SOLID{_SPG} 

Card1 1 2 3 4 5 6 7 8 

Variable SECID ELFORM AET      

Type I I I      

Default         

 
The SPG method is selected by setting ELFORM to 47, and two optional input cards are defined to obtain 
additional input parameters from the user: 
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Card2 1 2 3 4 5 6 7 8 

Variable DX DY DZ ISPLINE IDISC LSCALE SMSTEP SWTIME

Type F F F I I F I F 

Default 1.5 1.5 1.5 0 0    

Card3 1 2 3 4 5 6 7 8 

Variable Others        

Type I        

Default 0        

The variables are described as below: 

VARIABLE DESCRIPTION  

SECID Section ID. 

ELFORM Element formulation options. Set to 47 to active SPG method. 

DX, DY, DZ Normalized dilation parameters of the kernel functions in X, Y and Z 
directions. 

ISPLINE Option for kernel functions. 
  EQ.0: Cubic spline function (default). 
  EQ.1: Quadratic spline function. 
  EQ.2: Cubic spline function with circular shape. 

IDISC Type of discretization. 
EQ.0: Moving least-square (default). 
EQ.1: Convex approximation. 

LSCALE Length scale for displacement regularization. 

SMSTEP Interval of time steps to conduct displacement regularization. 

SWTIME Time to switch from adaptive Lagrangian kernel to Eulerian kernel. 

Others Cards 3 leaves to further developments in material failure/damage analyses. 

For the full description of the keyword *SECTION_SOLID, please refer to the LS-DYNA 
keyword users’ manual. 

 
6. Numerical Examples 

 
6.1 Implicit analysis for radial bushing problem  
 

This example is analyzed to identify the applicability of the proposed method to highly 
constrained problem using implicit version of SPG method. The radial metal bushing model in 
plain strain condition, as shown in Fig. 2, is studied, where the outer surface is fixed, and the 
inner surface sticks with an un-deformed core moving along vertical direction. The strain-
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hardening elastic-plastic material properties of the workpiece are: Young’s modulus E=2.0×106, 

Poisson’s ratio v=0.3, and an isotropic hardening rule     p
y

p
y ee  10  with coefficients 

30 100.1 y , 4100.2   and 1.0 . pe denotes the effective plastic strain and  p
y e  is the 

flow stress which is a scalar and increases monotonically with the effective plastic strain. Since 
the convex approximation result agrees well with the MLS approximation result, only MLS 
approximation result is reported in this example. As comparison, we also provide the results 
using two well-established nodal integration methods. A list of abbreviations for those methods 
along with their brief description is given in Table 1. Unless otherwise specified, a normalized 
nodal support size of 2.0 is considered in the example. A dimensionless unit system is also 
adopted in this paper for convenience.   
 

Table 1: Three nodal integration methods adopted in the numerical comparison 

Name Description 
DNI(MLS) MLS approximation with direct nodal integration 
SCNI(MLS) MLS approximation with stabilized conforming nodal integration 
SPG(MLS) MLS approximation with present formulation 

 
 

 
Figure 2: Radial bushing model. 

The comparison of load-displacement curves using a discretization of 168 nodes is plotted in 
Fig. 3. In this highly constrained problem, the SPG result matches with DNI result very well. In 
contrast, the SCNI method generates a solution that is softer than the others in the large 
deformation range. The soft force response in SCNI result is partially due to the characteristic of 
upper bound solution using SCNI integration scheme and coarse discretization. The unstable 
low-energy modes observed in the deformation as shown in Fig. 4 can also be regarded as the 
causes to the soft force response in SCNI method. The superior performance of the present SPG 
method can be demonstrated in the smoothness of displacement and effective plastic strain fields 
as depicted in Fig 5.   

Fig.6 provides the convergence study in this nonlinear analysis using SPG (MLS) method. It 
is shown in Fig. 6 that SPG (MLS) method provides a lower bound solution and suggests a 
convergence of reaction force as model is continuously refined. 
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Fig. 3: Comparison of force-displacement curves in the Radial bushing problem. 

 

   
(a)                (b)          (c) 

Fig. 4: Comparison of deformation plots with effective plastic strain results at dy=0.6: (a) DNI (MLS) 
method, (b) SCNI (MLS) method, and (c) SPG (MLS) method.   

 

 

   
(a)                  (b)                    (c)     

Fig. 5: Progressive deformation with effective plastic strain results by SPG (MLS) method: (a) dy = 
0.15, (b) dy = 0.45, and (c) dy=0.75.  
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Fig. 6: Convergence study of implicit SPG (MLS) using four discretization refinements. 

6.2 3D punch problem 
 

The large deformation problem is studied next in the Prandtl’s punch problem using the 
explicit dynamic analysis. The model is shown in Fig. 7 which consists of a block of size 4×2×1 
punched by a rigid, frictionless and flat plate with a vertical velocity of 2.0zv  . The metal block 
is assumed elastic and the material properties are: Young’s modulus E=6.9×104, Poisson’s ratio 
v=0.3 and density 3

0 2.7 10   . 

     
Figure 7: Prandtl’s punch model. Figure 8: SPG model for punch problem. 

The elastic block is discretized by 21×11×5 uniformly distributed particles as shown in Fig. 8. 
Cubic spline kernel function with a normalized dilation parameter of 1.6 in X, Y and Z directions 
is used in the computation. The problem is simulated using both the adaptive Lagrangian kernel 
approach and Eulerian kernel approach. 

Fig. 9 shows the comparison of the deformation plots between the adaptive Lagrangian kernel 
and Eulerian kernel approach. In the small deformation range, both approaches give almost 
identical results. However, when the deformation approaches to the large range, they behave 
quite differently. With the Eulerian kernel, the particles close to the edges of the impacting plate 
start to lose interaction with each other between t=0.3 and 0.4. This phenomenon leads to a 
numerical fracture similar to that of tensile instability [12-13] in SPH method and should be 
avoided. On the other hand, the Lagrangian kernel approach yields smooth and continuous 
deformation without numerical fracture. To generate a realistic result and prevent any numerical 

zv  
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fracture, a physical-based failure criterion should be employed to both approaches for the 
consideration in material failure analysis.  

 It is interesting to show how stable the proposed SPG method is for the 3D large deformation 
problem. There is no bulk viscosity added in the numerical scheme for this elastic material 
problem and the computation is finished without shooting nodes or unstable modes.  

 
Fig. 9: Progressive deformation with effective von-Mises stress. 

 

t=0.2

t=0.4

t=0.6

t=0.8

(a) Adaptive Lagrangian (b) Eulerian 
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6.3 Plate impacted by a rigid ball 
 
The third benchmark problem is a circular plate impacted by a rigid ball, as shown in Fig. 10. 

The plate has a radius of 20 and a thickness of 5 and is consisted of an elastic-perfectly plastic 
material with material properties of density 3

0 7.85 10   , Young’s modulus E=2.0×105, 

Poisson’s ratio v=0.3 and yield stress 22.0 10y   . The rigid ball has a radius of 5 and an impact 

speed of 600.0.  
 

 
Figure 10: Plate impact by a ball. Figure 11: Particle discretization of the plate. 

 
The plate is modeled by 25721 particles as shown in Fig. 11. Cubic spline kernel function 

with a normalized dilation parameter of 1.6 in X, Y and Z directions is adopted in the 
computation. To avoid any numerical fracture, the simulation is conducted with the adaptive 
Lagrangian kernel approach. 

 The progressive deformation of the plate is plotted in Fig. 14, together with the contours of 
the effective plastic strain. The results show that the proposed SPG method can handle large 
deformation with ease. Similar to the previous example, there is no shooting nodes or spurious 
zero-energy modes observed in the severe deformation range.  

The time history of the velocity of the impacting ball and the time history of the impact force 
are displayed in Figures (12) and (13). 

 

    
Figure 12: Time history of ball velocity. Figure 13: Time history of impact force. 
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Fig. 14: Progressive deformation of the plate with effective plastic strain. 

 
6.4 Explicit analysis for 3D metal cutting problem  
 

The metal cutting simulation is conducted by the SPG method in this example. The metal 
block has a size of 4×1×2 and is subjected to a shear cutting as shown in Fig.15. Same material 
constants in example 6.1 are used in this example. The cutting speed is 2 unit length/sec and 
material failure is based on a preset critical strain value. Explicit dynamic analysis and Eulerian 
kernel approach are performed for this cutting simulation. Under this setting, material will fail 
before numerical fracture occurs. Since the cutting speed is relatively slow, no buck viscosity is 
needed in this analysis.    

The progress cutting result is plotted in Fig. 16 that displays the effective plastic strain 
contour. As shown in Fig. 16, no shooting nodes or spurious energy modes are observed in the 
cutting process. The effective plastic strain distribution is monotonically increased without 
suffering from the numerical diffusion during the cutting simulation. 

 
 
 
 
 

 

 

 

 

Fig. 15: A side view of 3D metal cutting model. 

 

 

 

t=0.02

t=0.04

t=0.06 t=0.08

t=0.10
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Fig. 16: Progress cutting history plots in effective plastic strain contour. 

7. Conclusion 
 

A new particle method is developed for the large inelastic deformation and failure analyses in 
solid mechanics applications. The present particle method is intimately related to the residual-
based stabilization method for the elimination of zero-energy modes in conventional particle 
methods. No numerical viscosity and artificial control parameters are involved in the present 
formulation for the stabilization. The numerical results in quasi-static analyses justify the 
applicability of the present method for the large inelastic deformation analyses. A combination of 
explicit dynamic formulation and adaptive Lagrangian/Eulerian kernel approach helps advance 
the simulation to the severe inelastic deformation range. The method also could be a promising 
alternative for the simulation of impact and penetration problems involving material failure. Its 
extension to shell formulation is under investigation and will be reported in the near future. 
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