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Introduction 

 
In this paper, the strain-energy density with Mullins damage function on unloading and 
subsequent reloading is considered. We introduce a damage function that has four material 
constants: two for unloading and two for subsequent reloading. The effect of these constants on 
unloading and subsequent reloading is studied for uniaxial extension.  We determine these four 
material constants from a set of numerically generated uniaxial extension test data.  The 
mathematical formulation has been implemented in LS-DYNA® for user application and 
evaluation. 
 
This paper will be extended to two-dimensional problems and a set of biaxial test data will be 
obtained and analyzed.  The second part of this paper will be presented in another LS-DYNA 
conference. 

 
Formulation 

 
The strain-energy density function with Mullins damage function of a rubber is  iW ~

, and 

 
   ii WW  ~

         (1) 

 
where W  is the strain-energy density function based on the initial loading, and )(W   is a 
damage function for the Mullins effect. 
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The Cauchy stresses (force per unit deformed area) are 
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There are two similar equations for 2t  and 3t . 

 
The following damage function, a Cauchy first-order ordinary-differential equation, is chosen for 
this report. 
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For subsequent reloading 
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 imW   is the maximum strain-energy density function before unloading. 1r , 2r , 1m  and 2m  are 

the material constants for the Mullins damage function.  With this damage function the 
unloading and subsequent reloading follow different paths, as shown in Figure 1.  For a loading 
with a value of the strain-energy density function greater than  imW  , the process repeats. 

 
For Mooney-Rivlin materials the strain-energy density equation is: 
 
         3333 2112211  IICICICW       (5) 
 
where 1C  and 2C  are material constants and 12 / CC .  The strain invariants 1I  and 2I  are 

written in terms of the principal stretch ratios 1 , 2  and 3  

 
 2

3
2
2

2
11  I  

 2
1

2
3

2
3

2
2

2
2

2
12  I         (6) 

 
An incompressibility condition is assumed in the Mooney-Rivlin material constitutive equation, 
so that  
  
 1321            (7) 

 
For uniaxial tension or compression in 1-direction, 32    and 1

1
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Hence,  
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Cauchy stress 1t  is related to the uniaxial stretch ratio 1 .  
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For initial loading              
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For unloading                    
















































11

2
1

11
11 1

1
1

1
tanh

1
12







mW

W

mr
Ct    (9b) 

 

For subsequent reloading 
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The result for uniaxial extension obtained from EXCEL calculations is shown in Figure 1. 
The material constants are: 
 

501 C , 1.0 , 8.01 r , 0.11 m , 5.02 r  and .52 m  

 
The material is first stretched to point (1) followed by the initial loading path.  After point (1) the material is 
unloaded to the unstretched state and then reloaded to point (1) again. The stress-stretch ratio curves are shown in 
the figure and the Mullins effect is clearly seen.  The material is then further stretched past point (1) to point (2).  No 
Mullins effect occurs after point (1).  The material is then unloaded again to the origin and reloaded again to point 
(2).  The Mullins effect is seen again. 
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Figure 1. The Mullins effect for uniaxial loading, unloading and subsequent reloading,  

 obtained from EXCEL. 
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The effects of constants 1r  and 1m  
 
The effect of constants 1r  and 1m on unloading is studied for uniaxial extension.  The effect of 1r  

is shown in Figure 2.  The effect of 1m  is shown in Figure 3. They cover a wide range of 

unloading values.  When either 1r  or 1m  approaches a large value, then  
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The loading and unloading curves coincide and the Mullins effect vanishes. 
 
 

Study of constant r1 (m1=0.5)
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Figure 2. The effect of 1r  on unloading for uniaxial extension 
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Figure 3. The effect of 1m  on unloading for uniaxial extension 

 
The effects of 2r  and 2m  for reloading are the same as 1r  and 1m . With these four material 
constants the Mullins effect for most rubber-like materials can be modeled. 
 

Determining the damage constants 
 
The material constants can be obtained from test data and the least-square error minimization 
method.  The test datum for thi  stretch ratio on unloading or reloading is   if 1 .  Hence the 
error between test data and calculated value is  
 

     ifit 111           (11) 
For m data points, the sum of the square of errors is 
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By minimizing the sum of the squares of errors S , 1r , 1m , 2r  and 2m  are determined.   
 
The initial loading curve, shown in Figure 4, is in red.  The material constants are 751 C , 0 .  

In Part One of this paper the test data are generated numerically, and  5% experimental error 
was built into the numerical data.  The raw data for unloading and reloading are shown in dots in 
Figure 4.  The best fit that shows the Mullins effect and the raw data is shown in Figure 5. The 
determined Mullins damage constants are: 

8.01 r , 0.11 m , 5.02 r  and .52 m  
 

 
 
 

Figure 4. The stress-stretch curve for a neo-Hookean material and the numerical generated 

test data for unloading and reloading. 
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Figure 5.  The best-fit unloading and reloading stress-stretch curves and the test data 

 
LS-DYNA implementation 

 
The formulation presented in this paper applies to one-, two- and three-dimensional problems.  
For general three-dimensional problems the mathematical formulation has been implemented in 
LS-DYNA.   
 
The result of a cube of 0.5x0.5x0.5 subjected to uniaxial extension is obtained from LS-DYNA.  
The displacement at one end and the stress in the cube are shown in Figure 6.  The stress-
displacement plot is shown in Figure 8.  The same material constants, used in the analytical 
calculation, are used in the LS-DYNA calculation.  The displacement ( ) can be converted to 
the stretch ratio ( ).  L 1 ; the undeformed length of the cube is L . The results shown in 
Figure 1 from the analytical calculations and Figure 7 from LS-DYNA are the same. 
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Figure 6. The results from LS-DYNA. 

 

 
 

Figure 7. The stress-displacement plot from LS-DYNA. 
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Future work. 
 
In the second part of this paper, the Mullins effect on biaxial loading will be studied and a biaxial 
test will be performed.  The material constants will be determined from the biaxial test data. 
 
The formulations and applications can be extended to various rubbers with strain-energy density 
represented by various constitutive equations such as: neo-Hookean, Mooney, Ogden 
incompressible, and Ogden compressible materials.  It can also been extended to viscoelastic 
materials for compressible and incompressible viscoelastic materials subjected to very large 
deformation. 
 
We assumed that the Mullins damage function in this paper is represented by a hyperbolic 
tangent function; it can be changed to other functions if needed. 
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