
13th International LS-DYNA Users Conference Session: Computing Technology

 1-1

New Ordering Method for Implicit Mechanics and
What It Means for Large Implicit Simulations

Roger Grimes, Cleve Ashcraft

Livermore Software Technology Corporation

Abstract

The most egregious serial bottleneck for Large Implicit Mechanics modeling for distributed
memory parallel execution, independent of the application package, is the sparse matrix
ordering for the direct matrix solution. LSTC is developing a new distributed memory ordering
algorithm that is at least as effective as the serial algorithm METIS but is a fully scalable
implementation. We will give an overview of the algorithm and the impact on some benchmark
problems.

Problem Overview

Implicit solution methods for Finite Element modeling is dominated by the solution of the linear
algebra problem Ku = f. The evolution has gone from band methods, frontal methods, envelope
methods, and now the multi-frontal method. Since the 1960s there have been band minimization
methods, envelope reduction methods, and frontal width minimization. These have been to
reduce the computational resources for the numeric factorization. This is known as the symbolic
processing or reordering phase which precedes the numeric factorization. Since the introduction
of sparse matrix methods, especially the multi-frontal method, in the 1990’s, the problem is still
the same, how to reorder the matrix to reduce the computational cost for the numeric
factorization. Since the mid 1990s the leading software for this problem has been Metis which is
a public domain software package that is used by most commercial finite element packages for
this reordering phase. Metis does a great job of quickly and robustly finding a permutation of the
rows and columns of the matrix. But it does this using a global view of the matrix and is a serial
implementation. That is the serial bottleneck for a fully scalable implementation of a direct
linear equation solver in the distributed memory parallel environment.

The current implementation of LS-DYNA® Implicit uses a direct solution approach to solve the
linear algebra problem based on 4 steps:

- Matrix Assembly and Constraint Processing
- Symbolic Processing
- Numeric Factorization
- Numeric Solution

The first and last 2 steps are fully scalable for the MPP implementation. The matrix is
constructed and constraints processed to build a subset of the columns on each process. The
numeric factorization and solution are also completely scalable. It is the symbolic factorization
phase that is not.

Session: Computing Technology 13th International LS-DYNA Users Conference

1-2

The symbolic factorization phase constructs a compressed graph representation of linear algebra
problem. This is close, but not quite the same, as the node and element connectivity of the finite
element problem while accounting for contact and constraints. This compressed graph
representation is a global data structure that has to exist in memory on at least one process. For
every process that has enough memory to hold that global data structure and that has enough
extra memory for the execution of Metis then executes Metis. Each execution has a random seed
so each such process gets a different ordering. At the completion of Metis the processes then
vote on who has the best. That ordering is then shared with all of the other processes. After this
phase, all of the computations are fully scalable.

There are competing software packages to Metis. In addition, there is a parallel implementation
of Metis. But none produces an ordering that has the same high quality results as Metis. A poor
quality ordering causes a significant increase in the computational resources for the following
numeric phase.

LSTC has such a good scalable matrix assembly, numeric factorization and solution phases that
more computer time and computer storage are required for the symbolic factorization phase for
large problems using lots of processes. This is the serial bottleneck that is the current limiting
factor of LS-DYNA Implicit and all finite element software packages.

Our New Approach

LSTC starts with a matrix that is distributed across processes. We now have an enhanced
process for building the compressed graph representation without using global data structures.
This required recasting the compression algorithm as a sparse matrix multiplication and as an
iterative algorithm.

We have gone back to algorithms from the 1970s that were used for the band width
minimization, front width minimization, and envelope reduction methods. These were all based
on using level structures. These methods relied on finding a pseudo-peripheral nodes that
represent the extreme points of the adjacency structure. All nodes adjacent to one pseudo-
peripheral node forms the first level of the level structure. The nodes adjacent to the first level
form the second level. This continues until all nodes have been accounted for. The goal was to
have a level structure as long as possible. For the multi-frontal method we take level near the
middle of the level structure as a separator that cuts the problem into two halves of equal size.
We also want the separator to have as few nodes as possible. And then apply that recursively.

But finding pseudo-peripheral nodes and level structures are expensive in MPP. And the 1970’s
level structures have difficulties with irregular geometries. LSTC has made several
improvements. First we have extended these approaches to use “half-level” level structures to
get better separators for irregular geometries. We have already filed for and have been granted a
U.S. patent on this technology. We have also generalized the concept of pseudo-peripheral
nodes to source points. We use a “sonar” like approach to find “source points” near the
periphery. We then generate a level structure for each pair of source points. The cost of
generating many level structures in the MPP environment is only slightly more than the cost of
generating one level structure. This gives us a set of candidates for separators.

13th International LS-DYNA Users Conference Session: Computing Technology

 1-3

We now have a set of candidates for a separator. We also have made several simplifications to
generate these candidates. So we have been developing algorithms to improve separators. This
is akin to iterative approaches to solve a system of linear equations where you start with a good
solution and make it better.

To date we have implemented one improvement algorithm in MPP and results based on that is
shown later in this paper. We have a second improvement algorithm implemented and test in
Matlab. We will be implementing that in the LS-DYNA MPP source in the near future.

We apply this finding of a separator recursively to divide the original model into domains, one
domain for each process. We then apply Metis to compute an ordering for each subdomain.
Finally the separators are ordered appropriately to compute an ordering for the numerical
factorization phase.

Examples

We will now show results on two examples. The first is a circle in a plane discretized with a
triangular mesh. This was run using 4 processes in the MPP environment to divide the model
into 4 domains. We can capture the ordering information and turn it into a keyword file that can
be viewed by LSPrePost. This picture shows the 2 levels of separators and the 4 subdomains.

The second example is a fan blade model based on 104448 solid elements split into 8 domains
using 8 MPP processes

Session: Computing Technology 13th International LS-DYNA Users Conference

1-4

13th International LS-DYNA Users Conference Session: Computing Technology

 1-5

All of these separators are almost perfect except that last one highlighted. They cut the domain
into two equal parts with perfect planar cuts. That highlighted separator has some bends. We
expect the soon to be implemented improvement algorithm to fix this.

Our goal is a scalable algorithm that computes an ordering as good as Metis. Using the fan blade
model and 2, 4, 8, and 16 processes we have a scaling comparison in storage and wall clock time
of processes Metis Storage LSDYNA Storage Metis WCT LSDYNA WCT

2 435 Mb 491 Mb 29.0 206.6
4 435 Mb 209 Mb 28.8 36.4
8 435 Mb 156 Mb 29.2 88.8
16 435 Mb 108 Mb 31.1 94.7

Remember that the current implementation in LSDYNA is for development. And each increase
in processes increases the number of sub-domains so the work increases. We see the storage
scaling although not perfectly. The wall clock time is obfuscated by the fact there is a lot of
debug output that is increasing the time. Nor is our implementation production harden as is
Metis. But we are achieving our goals of scalability in storage. Importantly there are no global
data structures. We expect the wall clock time to improve as we move towards production.

And for these problems, the ordering we are computing is actually better than Metis in reducing
the computational requirements for the numeric factorization. We expect that this will reduce
the wall clock time for the numeric factorization which will offset the increased wall clock time
for the ordering.

