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Abstract 
 
For the automotive industry, car crash analysis by finite elements is crucial to shortening the design cycle and 
reducing costs.  To increase the accuracy of analysis, in additional to the improvement in finite element technique, 
smaller cells of finite element meshes are used to better represent the car geometry. The use of finer mesh coupled 
with the need for fast turnaround has put increased demand on scalability of the finite element analysis.  
In this paper, we will use the car2car model to measure LS-DYNA scalability on Cray® XC30™ supercomputers, 
an Intel ® Xeon® processor-based system using the Cray Aries network.  The scalability of different functions in 
LS-DYNA at high core counts will be analyzed.  The MPI communication pattern of LS-DYNA will also be 
studied.  In addition to that, we will also explore the performance difference between using one thread per core and 
two threads per core.  Finally, we will explore the performance impact of using large Linux Huge Pages. 

 

 
1. Introduction 

Since May 2013, CRAY Inc. and LSTC have been working jointly with a customer on some very 
large (25M -100 M elements) explicit LS-DYNA analysis problems to evaluate LS-DYNA 
scalability on the CRAY XC30 system.  Currently this problem takes nearly a month to complete 
on a Linux cluster at the customer site due to the large problem size and limited scalability of 
MPP LS-DYNA.  To shorten their design cycle, the customer needs better hardware and 
software performance.  

In the last decade, the number of cores per processor has been doubled in every couple of years, 
but the CPU clock has not been getting much faster.  So to reduce the simulation turnaround 
time, we need highly scalable supercomputers and improved LS-DYNA parallel performance.  
Currently, due to the nature of load imbalance in LS-DYNA contact algorithm, MPP LS-DYNA 
scalability has been limited to 1,000 to 2,000 cores depending on the size of the problem.  In 
order to improve LS-DYNA scalability, we need to use HYBRID LS-DYNA which combines 
distributed memory parallelism using MPI with shared memory parallelism using OpenMP.   

The advantage of HYBRID LS-DYNA at low core counts has been demonstrated by Kendo and 
Makino [1], and Meng and Wang [2].  In this paper, we will use the car2car model from 
topcrunch.org to understand the scalability of MPP and HYBRID LS-DYNA at high core counts 
on the CRAY XC30 system.  

2. Scalability Analysis of Pure MPP LS-DYNA on the CRAY XC30 System 
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First, we use the car2car model (with 2.4M elements) to test pure MPP LS-DYNA parallel 
performance at high core counts of 256 to 4,096 on the CRAY XC30 system.  

2.1 Software and Hardware Configurations 

The following hardware and software configurations are used for this evaluation: 

Table 1:  Summary of hardware and software configurations 

System type Cray XC30 
Processor architecture 2.6 GHZ Sandy Bridge 
sockets/node 2 sockets per node 
Number of cores per socket 8 cores per socket or 16 core per node 
Network Aries Interconnect and Dragonfly Topology 
Memory size per node 32 GB/node 
OS CRAY CLE5.1 
LS-DYNA version  LS-DYNA R61_84148 
Compiler version Intel/13.1.3.192 
MPI version CRAY-MPICH/6.0.2 
 

2.2 Pure MPP LS-DYNA Scalability 

Figure 1 shows the scalability of pure MPP LS-DYNA in car2car at core counts from 256 to 
4,096 on an XC30 system.  Pure MPP LS-DYNA scales reasonably well up to 2,048 cores, but 
beyond that the scaling levels off.  In the next section we will look at LS-DYNA functionality 
profiles to understand the limiting factor in pure MPP LS-DYNA scaling.  

 

Figure 1: Pure MPP LS-DYNA scalability in car2car on a CRAY XC30 system 

2.3 Scalability of Element Processing and Contact 
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LS-DYNA provides detail timing information of several major functions at the end of the log 
file.  For car crash simulations, the functions of “element processing”, ”contact algorithm”, and 
“rigid bodies” consume more than 85% of total wall clock time at high core counts.  Since there 
is no MPI barrier call between “contact algorithm” and “rigid bodies”, we will measure the 
combined time spent on both (referred to as “contact + rigid bodies” in this paper).   

Now let’s take a look at how “element processing” and “contact + rigid bodies” of pure MPP  
LS-DYNA perform at high core counts.  Figure 2 shows that “element processing” scales very 
well up to 4,096 cores; however, “contact + rigid bodies”, on the other hand, scale poorly for 
core counts of 256 to 2,048 and hardly scales after 2,048 cores.  This result indicates that 
“contact + rigid bodies” scalability is the limiting factor for pure MPP LS-DYNA scaling beyond 
2,048 cores. 

Next, we will use CRAY MPI profiling tool called “profiler” to show the lack of scalability in 
“contact + rigid bodies”.   

 

Figure 2: Scalability of “element processing” and “contact+rigid Bodies” in Car2car on a CRAY 
XC30 system 

2.4 MPI Profile of Pure MPP LS-DYNA 

CRAY MPI “profiler” reports the total elapsed time, computational time, and MPI time as well 
as MPI communication patterns. For collective calls, it further breaks down MPI time to MPI 
synchronization time (time that a process spends on synchronizing with other processes) and 
MPI communication time (time that a process spends on communicating with other processes).  
MPI synchronization time is proportional to the amount of the load imbalance in a program, and 
MPI communication time is disproportional to the speed of interconnect.  For MPI time in point 
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to point communications, such as MPI_send and MPI_recv, however, MPI synchronization time 
and communication time cannot be measured separately.  Rather, measurement of MPI 
communication time in point to point MPI communication calls is the sum of MPI 
synchronization time and communication time.  

Figure 3 shows the scalability of MPI time of pure MPP LS-DYNA in car2car on the Cray XC30 
system.  The total MPI time reduces from 2,309s at core count of 256 to 1,478s at core count of 
2,048, but increases to 1,570s at core count of 4,096.  The percentage of total MPI time to total 
elapsed time increases from 36% at 256 cores to 74% at 4,096 cores.  Additionally, MPI 
synchronization time is about 65% of total MPI time. This result further indicates that load 
imbalance in contact algorithm of pure MPP LS-DYNA is the main cause of the poor scalability 
at high core counts.  

  

Figure 3: Scalability of MPI time in car2car on a CRAY XC30 system 

From CRAY “profiler” reports, we find that 80% of MPI time in Pure MPP LS-DYNA is spent 
on MPI_bcast, MPI_allreduce, and MPI_recv.  Figure 4 depicts the MPI time, synchronization 
time and communication time on these three MPI calls.   It reviews that MPI_bcast 
communication time is less than 2.5% of MPI_bcast synchronization time, and overall 
MPI_bcast time decreases as core count increases.  MPI_allreduce communication time is less 
than 5% of MPI_allreduce synchronization time, and overall MPI_allreduce time increases with 
core count.  MPI_recv time, which is about 26% to 38% of total MPI time, reduces as core count 
increases from 256 to 1,024 cores.  But MPI_recv time increases as core counts increases from 
1,024 to 4,096 cores.   

As we have mentioned earlier,  MPI_recv synchronization and communication time cannot be 
measured separately.  Based on the amount of synchronization time in MPI_bcast and 
MPI_allreduce, we believe that larger portion of measured MPI_recv time is probably spent on 



13th International LS-DYNA Users Conference Session: Computing Technology 

 1-5 

synchronization.  This hypothesis implies that most of MPI time is spent on MPI synchronization 
meaning that load imbalance in LS-DYNA is what prevents it from scaling beyond 2,048 cores.  
This also means that without load imbalance issue, the speed of MPI communication in an XC30 
system would be fast enough for pure MPP LS-DYNA to potentially scale to 4,096 and beyond. 

  

 

Figure 4: MPI communication patterns of Pure MPP LS-DYNA in car2car on a Cray XC30 
system 

One effective way to reduce the impact of load imbalance on LS-DYNA parallel performance is 
to use HYBRID LS-DYNA which combines MPI processes with OpenMP threads.  With 
HYBRID LS-DYNA, we can push LS-DYNA scaling to beyond 2,048 cores.  In the next 
section, we will discuss HYBRID LS-DYNA parallel performance in car2car, as well as its 
comparison with pure MPP LS-DYNA on an XC30 system. 

3. Scalability Analysis of HYBRID LS-DYNA on a CRAY XC30 System 

3.1 Advantage of HYBRID LS-DYNA over Pure MPP LS-DYNA 

The shared memory parallelism of explicit LS-DYNA scales well to 8 threads.  In the first 
evaluation, we run HYBRID LS-DYNA using 4 OpenMP threads with core counts from 256 to 
4,096.  Figure 5 shows that HYBRID LS-DYNA is 23% to 60% faster than pure MPP             
LS-DYNA for the same core counts. 
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Figure 5: Performance comparison between Pure MPP and HYBRID LS-DYNA in car2car on 
Cray XC30 

Figure 6 and Figure 7 show the performance comparisons of “element processing” and 
“contact+rigid bodies” between pure MPP and HYBRID LS-DYNA on an XC30 system.  
“Element processing” of HYBRID LS-DYNA is 35% to 58% faster than that of pure MPP       
LS-DYNA, while “contact+rigid bodies” of HYBRID LS-DYNA is 2% slower than that of MPP 
LS-DYNA at 256 cores and becomes 10% faster at 512 cores and reaches 43% faster at 4,096 
cores. So for core counts of 256 to 512, HYBRID LS-DYNA gains its performance over MPP 
LS-DYNA mainly from “element processing”. For cores counts of 1,024 to 4,096, it gains its 
performance from both “element processing” and “contact + rigid bodies”.  

 

Figure 6: “Element processing” performance comparison between MPP and HYBRID             
LS-DYNA in car2car on an XC30 system 
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Figure 7: “Contact and rigid bodies” performance comparison between MPP and HYBRID in 
car2car on an XC30 system 

In the next section, we will explore the effect of the number of OpenMP threads on HYBRID 
LS-DYNA performance at high core counts.  

3.2 The Effect of the Number of OpenMP Threads on HYBRID LS-DYNA Performance 

 

Figure 8: Hybrid LS-DYNA performance comparisons among different OpenMP threads in 
car2car on an XC30 system 

In this study, we will keep the total number of cores, which is equal to MPI ranks × OpenMP 
threads, the same while varying MPI ranks and OpenMPI threads.  For an example, for 256 
cores, we use three different combinations: 128 MPI ranks × 2 OpenMP threads, 64 MPI ranks × 
4 OpenMP threads, and 32 MPI ranks × 8 OpenMP threads.  Figure 8 depicts the performance 
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difference among the three different OpenMP threads.  At 256 cores, using 2 threads is 1.5% 
faster than using 4 threads and it is also 7% faster than using 8 threads.  At 2,048 cores, using 8 
threads is about 3% faster than using 4 threads, and it is also 9% faster than using 2 threads.  At 
other core counts, using 4 threads is 5% to 23% faster than using 2 threads and it is also 5% to 
8% faster than using 8 threads.  So we recommend the use of 4 OpenMP threads for HYBRID 
LS-DYNA at high core counts. 

4. The Effect of Intel Hyper-Threading Technology and Linux Huge Pages on 
LS-DYNA Performance 

4.1 The Effect of Intel Hyper-Threading Technology on LS-DYNA Performance 

Intel Hyper-Threading Technology is enabled on the CRAY XC30 system’s BIOS.  We run pure 
MPP LS-DYNA with 2 threads per core in car2car for core counts from 256 to 2,048.  It is found 
that using 2 threads per core is about 5% to 29% slower than using only 1 thread per core for the 
same core counts.  So it is not recommended to use 2 threads per core for pure MPP LS-DYNA 
at high core counts.  

4.2 The Effect of Linux Huge Pages on LS-DYNA Performance 

Cray XC30 software allows the use of different sizes of Linux Huge Pages.  The default Linux 
Huge Page size is 4 kilobytes.  We test pure MPP LS-DYNA in car2car using 2 megabyte Linux 
Huge Pages at core counts of 256 to 4,096, but no noticeable performance advantage is observed.  
This is because LS-DYNA is a cache friendly code. 

Conclusion 

Pure MPP LS-DYNA scaling stops at 2,048 cores on the CRAY XC30 supercomputer.  The 
limiting factor is load imbalance in the LS-DYNA contact algorithm.  HYBRID LS-DYNA 
extends LS-DYNA scaling to 4,096 cores and perhaps beyond on the XC30 system.  Using 4 
OpenMP threads in general yields close to the best or the best performance. Using 2 threads per 
core for LS-DYNA is not recommended on the CRAY XC30 system.  Using large Linux Huge 
Pages has no effect on LS-DYNA performance. 
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