
13th International LS-DYNA Users Conference Session: Computing Technology

 1-1

Increasing LS-DYNA® Productivity on SGI Systems:
A Step-by-Step Approach

Olivier Schreiber, Tony DeVarco, Scott Shaw, Aaron Altman

SGI

Abstract

SGI delivers a unified compute, storage and remote visualization solution to our manufacturing customers that
reduces overall system management requirements and costs . LSTC has now integrated Explicit, Implicit solver
technologies into a single hybrid code base allowing seamless switching from large time steps transient dynamics to
linear statics and normal modes analysis. There are multiple computer architectures available from SGI to run
LS-DYNA. They can all run LSTC solvers using Shared Memory Parallelism (SMP), Distributed Memory
Parallelism (DMP) and their combination (Hybrid Mode) as supported by LS-DYNA. Because computer resources
requirements are different for Explicit and Implicit solvers, this paper will study how advanced SGI computer
systems, ranging from multi-node Distributed Memory Processor clusters to Shared Memory Processor servers
address the computer resources used and what tradeoffs are involved. This paper will also outline the SGI hardware
and software components for running LS-PrePost® via SGI VizServer with NICE Software. CAE engineers, at the
departmental level, can now allow multiple remote users create, collaborate, test, optimize, and verify new complex
LS-DYNA simulations in a single system and without moving their data.

1.0 About SGI Systems
SGI systems used to perform the benchmarks outlined in this paper include the SGI®

Rackable®

standard depth cluster, SGI®

ICE™ X integrated blade cluster and the SGI® UV™ 2000 shared
memory system. They are the same servers used to solve some of the world’s most difficult
computing challenges. Each of these server platforms support LSTC LS-DYNA with its Shared
Memory Parallel (SMP) and Distributed Memory Parallel (DMP) modes [1].

1.1 SGI® Rackable® Standard-Depth Cluster

SGI Rackable standard-depth, rackmount C2112-4RP4 servers support up to 512GB of memory
per server in a dense architecture with up to 96 cores per 2U with support for up to 56 GB/s, FDR
and QDR InfiniBand, twelve-core Intel® Xeon®

processor E5-2600 v2 series and DDR3 memory
running SUSE®

Linux® Enterprise Server or Red Hat

® Enterprise Linux Server for a reduced

TCO (Figure 1).

SGI Rackable C2112-4RP4 configuration used in this paper:

 Intel® Xeon®

12-core 2.7 GHz E5-2697 v2

 Mellanox® Technologies ConnectX® Industry standard Infiniband FDR

 5 GB RAM/core Memory Speed 1867MHz

 Altair®

PBS Professional Batch Scheduler v11

 SLES or RHEL, SGI Performance Suite with Accelerate™

 Scratch file system was RAM (/dev/shm)

Session # 13th International LS-DYNA Users Conference

1-2

Figure 1: Overhead View of SGI Rackable Server with the Top Cover Removed

1.2 SGI® ICE™ X System

SGI® ICE™

X is one of the world’s fastest commercial distributed memory supercomputer.
This performance leadership is proven in the lab and at customer sites including the largest
and fastest pure compute InfiniBand cluster in the world. The system can be configured with
compute nodes comprising Intel® Xeon®

processor E5-2600 v2 series exclusively or with
compute nodes comprising both Intel® Xeon®

processors and Intel® Xeon Phi™ coprocessors
or Nvidia® compute GPU’s. Running on SUSS®

Linux® Enterprise Server and Red Hat®

Enterprise Linux, SGI ICE X can deliver over 172 teraflops per rack and scale from 36 to
tens of thousands of nodes.

SGI

ICE

X is designed to minimize system overhead and communication bottlenecks, and offers,
for example the highest performance and scalability, up to 4,096 cores processing in parallel for
ANSYS Fluent computer fluid dynamics (CFD) or above 2000 cores for LS-DYNA
topcrunch.org benchmarks with top-most positions six years running.

SGI

ICE

X can be architected in a variety of topologies with choice of switch and single or
dual plane FDR Infiniband interconnect. The integrated bladed design offers rack-level
redundant power and cooling via air, warm or cold water and is also available with storage
and visualization options (Figure 2).

SGI ICE X configuration used in this paper:

 Intel® Xeon®10-core 3.0 GHz E5-2690 v2

 Mellanox® Technologies ConnectX® Industry standard Infiniband FDR integrated
interconnect Hypercube

 3 GB of Memory/core Memory Speed 1867MHz

 Altair® PBS Professional Batch Scheduler v11

 SLES or RHEL, SGI Performance Suite with Accelerate™

13th International LS-DYNA Users Conference Session: Computing Technology

 1-3

Figure 2: SGI ICE X Cluster with Blade Enclosure

1.3 SGI® UV™ 2000

SGI UV 2000 server comprises up to 256 sockets (2,048 cores), with architectural support for
32,768 sockets (262,144 cores). Support for 64TB of global shared memory in a single system
image enables efficiency of SGI UV for applications ranging from in-memory databases, to
diverse sets of data and compute-intensive HPC applications all the while programming via the
familiar Linux

OS [2], without the need for rewriting software to include complex
communication algorithms. TCO is lower due to one-system administration needs. Workflow and
overall time to solution is accelerated by running Pre/Post-Processing, solvers and visualization
on one system without having to move data (Figure 3).

Job memory is allocated independently from cores allocation for maximum multi-user,
heterogeneous workload environment flexibility. Whereas on a cluster, problems have to be
decomposed and require many nodes to be available, the SGI UV can run a large memory
problem on any number of cores and application license availability with less concern of the job
getting killed for lack of memory resources compared to a cluster.

Figure 3: SGI UV CAE workflow running LSTC applications

Session # 13th International LS-DYNA Users Conference

1-4

SGI UV 2000 configuration used in this paper:

 64 sockets (512 cores) per rack

 Intel® Xeon® 8 core 3.3 GHz E5-4627 v2

 SGI NUMAlink® 6 Interconnect

 4 GB of RAM/core Memory Speed 1867 MHz

 Altair® PBS Professional Batch Scheduler with CPUSET MOM v11

 SLES or RHEL, SGI Performance Suite with Accelerate™

1.4 SGI Performance tools

SGI® Performance Suite (Figure 4) takes Linux performance software to the next level. While
hardware and processor technology continue to scale, managing software performance has become
increasingly complex. SGI continues to extend technical computing performance for large scale
servers and clusters. SGI Performance Suite incorporates the most powerful features and
functionality from SGI® ProPack™ 7, combined with several new tools and enhancements, and new,
more flexible product packaging which allows you to purchase only the component or components
that you need. For detailed information: http://www.sgi.com/products/software/

Figure 4: SGI Performance Suite Components

1.5 SGI System Management tools

SGI Management Center (Figure 5) provides a powerful yet flexible interface through which to
initiate management actions and monitor essential system metrics for all SGI systems. It reduces
the time and resources spent administering systems by improving software maintenance

13th International LS-DYNA Users Conference Session: Computing Technology

 1-5

procedures and automating repetitive tasks ultimately lowering total cost of ownership,
increasing productivity, and providing a better return on the customer’s technology investment.
SGI Management Center is available in multiple editions which tailor features and capabilities to the
needs of different administrators, and makes available optional features that further extend system
management capabilities. For detailed information: http://www.sgi.com/products/software/smc.html

Figure 5: SGI Management Center Web Interface

1.6 Resource and Workload Scheduling

Resource and workload scheduling allows one to manage large, complex applications, dynamic
and unpredictable workloads, and optimize limited computing resources. SGI offers several
solutions that customers can choose from to best meet their needs.

Altair Engineering PBS Professional®

is SGI’s preferred workload management tool for
technical computing scaling across SGI’s clusters and servers. PBS Professional is sold by SGI and
supported by both Altair Engineering and SGI. Features:

 Policy-driven workload management which improves productivity, meets
service levels, and minimizes hardware and software costs

 Integrated operation with SGI Management Center for features such as
workload-driven, automated dynamic provisioning

1.7 SGI® VizServer® with NICE DCV

SGI® VizServer® with NICE DCV gives technical users remote 3D modeling tools through a
web-based portal, allowing for GPU and resource sharing and secure data storage. (Figure 6)

Session # 13th International LS-DYNA Users Conference

1-6

Figure 6: VizServer workflow

SGI® VizServer® with NICE DCV installed on a company’s servers can provide LS-PrePost
remote visualization capabilities through a software-as-a-service (SaaS) built in the company’s
private network. The LS-PrePost software is accessed through an easy-to-use web interface,
resulting in simplicity for the end user. This solution provides intuitive help and guidance to
ensure that less-experienced users can maximize productivity without being hindered by complex
IT processes.

SGI® VizServer® with NICE DCV Components:

 Engineer-friendly self-service portal: The self-service portal enables engineers to access the
LS-PrePost application and data in a web browser–based setting. It also provides security,
monitoring, and management to ensure that users cannot leak company data and that IT managers
can track usage. Engineers access the LS-PrePost application and data directly from their web
browsers, with no need for a separate software installation on their local client.

 Resource control and abstraction layer: The resource control and abstraction layer lies
underneath the portal, not visible to end users. It handles job scheduling, remote visualization,
resource provisioning, interactive workloads, and distributed data management without detracting
from the user experience. This layer translates the user request from the browser and facilitates
the delivery of resources needed to complete the visualization or HPC tasks. This layer has a
scalable architecture to work on a single cluster or server, as well as a multi-site WAN
implementation.

 Computational and storage resources: The SGI® VizServer® with NICE DCV software takes

advantage of the company’s existing or newly purchased SGI industry-standard resources, such
as servers, HPC schedulers, memory, graphical processing units (GPUs), and visualization
servers, as well as the required storage to host application binaries, models and intermediate
results. These are all accessed through the web-based portal via the resource control and
abstraction layer and are provisioned according to the end user’s needs by the middle layer.

The NICE DCV and EnginFrame software is built on common technology standards. The
software adapts to network infrastructures so that an enterprise can create its own secure
engineering cloud without major network upgrades. The software also secures data, removing
the need to transfer it and stage it on the workstation, since both technical applications and data

13th International LS-DYNA Users Conference Session: Computing Technology

 1-7

stay in the private cloud or data center. These solutions feature the best characteristics of cloud
computing—simple, self-service, dynamic, and scalable, while still being powerful enough to
provide 3D visualization as well as HPC capabilities to end users, regardless of their location.

2.0 LS-DYNA

2.1 Versions used

LS-DYNA/MPP ls971 R3.2.1 or later. At R4.2.1, coordinate arrays were coded to double
precision for the simulation of finer time-wise phenomena thus incurring a decrease in
performance of 25% (neon) to 35% (car2car).

Compilers: Fortran: Intel Fortran Compiler 11.1 for EM64T-based applications

MPI: P-MPI, Intel MPI, Open MPI, SGI MPI

 2.2 Parallel Processing capabilities of LS-DYNA
2.2.1 Underlying hardware and Software Notions

It is important to distinguish hardware components of a system and the actual computations
being performed using them. On the hardware side, one can identify:

1. Cores, the Central Processing Units (CPU) capable of arithmetic operations.

2. Processors, the four, six, eight, ten or twelve core socket-mounted devices.

3. Nodes, the hosts associated with one network interface and address.

With current technology, nodes are implemented on boards in a chassis or blade rack-mounted
enclosure. The board may comprise two sockets or more.

From the software side, one can identify:

1. Processes: execution streams having their own address space.

2. Threads: execution streams sharing address space with other threads.

Therefore, it is important to note that processes and threads created to compute a solution on a
system will be deployed in different ways on the underlying nodes through the processors and
cores’ hardware hierarchy.

Note: Software processes or threads don't necessarily map one to one to hardware cores,
and can also under or over-subscribe them.

2.1.2 Parallelism Background

Parallelism in scientific/technical computing exists in two paradigms implemented separately but
sometimes combined in `hybrid' codes: Shared Memory Parallelism (SMP) appeared in the
1980’s with the strip mining of ‘DO loops’ and subroutine spawning via memory-sharing

Session # 13th International LS-DYNA Users Conference

1-8

threads. In this paradigm, parallel efficiency is affected by the relative importance of arithmetic
operations versus data access referred to as ‘DO loop granularity.’ In the late 1990’s, Distributed
Memory Parallelism (DMP) Processing was introduced and proved very suitable for
performance gains because of its coarser grain parallelism design. It consolidated on the MPI
Application Programming Interface. In the meantime, Shared Memory Parallelism saw adjunction
of mathematical libraries already parallelized using efficient implementation through OpenMP™
(Open Multi-Processing) and Pthreads standard API’s.

Both SMP and DMP programs are run on the two commonly available hardware system levels:

 Shared Memory systems or single nodes with multiple cores sharing a single memory
address space.

 Distributed Memory systems, otherwise known as clusters, comprised of nodes with
separate local memory address spaces.

Note: While SMP programs cannot execute across clusters because they cannot handle
communication between their separate nodes with their respective memory spaces, inversely,
DMP programs can be used perfectly well on a Shared Memory system. Since DMP has coarser
granularity than SMP, it is therefore preferable, on a Shared Memory system, to run DMP rather
than SMP despite what the names may imply at first glance. SMP and DMP processing may be
available combined together, in ‘hybrid m o d e ’.

2.1.3 Distributed Memory Parallel implementations

Distributed Memory Parallel is implemented through the problem at hand with domain
decomposition. Depending on the physics involved in their respective industry, the domains could
be geometry, finite elements, matrix, frequency, load cases or right hand side of an implicit method.
Parallel inefficiency from communication costs is affected by the boundaries created by the
partitioning. Load balancing is also important so that all MPI processes perform the same number of
computations during the solution and therefore finish at the same time. Deployment of the MPI
processes across the computing resources can be adapted to each architecture with ‘rank’ or
‘round-robin’ allocation.

2.1.4 Parallelism Metrics

Amdahl’s Law, ‘Speedup yielded by increasing the number of parallel processes of a program is
bounded by the inverse of its sequential fraction’ is also expressed by the following formula
(where P is the program portion that can be made parallel, 1-P is its serial complement and N is
the number of processes applied to the computation):

Amdahl Speedup=1/[(1-P)+P/N]

A derived metric is: Efficiency=Amdahl Speedup/N

13th International LS-DYNA Users Conference Session: Computing Technology

 1-9

A trend can already be deduced by the empirical fact that the parallelizable fraction of an
application is depends more on CPU speed, and the serial part, comprising overhead tasks
depends more on RAM speed or I/O bandwidth. Therefore, a higher CPU speed system will
have a larger 1-P serial part and a smaller P parallel part causing the Amdahl Speedup to decrease.
This can lead to a misleading assessment of different hardware configurations as shown by this
example where, say System B has faster CPU speed than system A:

N System a elapsed seconds System B elapsed seconds

1 1000 810

10 100 90

Speedup 10 9

System A and System B could show parallel speedups of 10 and 9, respectively, even though
System B has faster raw performance across the board. Normalizing speedups with the slowest
system serial time remedies this problem:

Speedup 10 11.11

A computational process can exhibit:

 Strong scalability: Decreasing execution time on a particular dataset when increasing
processes count.

 Weak scalability. Keeping execution time constant on ever larger datasets when increasing
processes count.

It may be preferable, in the end, to use a throughput metric, especially if several jobs are running
simultaneously on a system:

Number of jobs/hour/system = 3600/(Job elapsed time)

The system could be a chassis, rack, blade, or any hardware provisioned as a whole unit.

2.3 Parallel execution Control

2.3.1 Submittal Procedure

Submittal procedure must ensure:

 Placement of processes and threads across nodes and also sockets within nodes

 Control of process memory allocation to stay within node capacity

 Use of adequate scratch files across nodes or network
Batch schedulers/resource managers dispatch jobs from a front-end login node to be executed on
one or more compute nodes so the following is a possible synoptic of a job submission script:

 Change directory to the local scratch directory on the first compute node allocated by the
batch scheduler.

Session # 13th International LS-DYNA Users Conference

1-10

 Copy all input files over to this directory.

 Create parallel local scratch directories on the other compute nodes allocated by the batch
scheduler.

 Launch application on the first compute node. The executable may itself carry out
propagation and collection of various files between launch node and the others at start, and
end of the main analysis execution. The launch script may also asynchronously sweep
output files like d3plot* files to free up scratch directory.

2.3.2 Run Command with MPI tasks and OpenMP thread allocation across
nodes and cores

For LS-DYNA, the deployment of processes, threads and associated memory is achieved with
the following keywords in execution command [1]:

 -np: Total number of MPI processes used in a Distributed Memory Parallel job.
 ncpu=: number of SMP OpenMP threads

 memory, memory2: Size in words of allocated RAM for MPI processes. (A word is 4 or
8 bytes long for single or double precision executables, respectively.)

2.4 Tuning

2.4.1 Input/Output and Memory

To achieve the best runtime in a batch environment, disk access to input and output files should
be placed on the high performance filesystem closest to the compute node. The high
performance filesystem could be an in-memory filesystem (/dev/shm), a Direct (DAS) or
Network (NAS) Attached Storage filesystem. In diskless computing environments, in-memory
filesystem or Network Attached Storage are the only options. In cluster computing environments
with a Network Attached Filesystem (NAS), isolating application MPI communications and
NFS traffic will provide the best NFS I/O throughput for scratch files. The filesystem
nomenclature is illustrated in Figure 7.

Figure 7: Example filesystems for Scratch Space

13th International LS-DYNA Users Conference Session: Computing Technology

 1-11

Having more memory per core will increase performance since it can be allocated for the analysis
as well as the Linux kernel buffer cache to improve I/O efficiency. SGI’s Flexible File I/O (FFIO)
is a link-less library (which means it does not need to be linked to the application) bundled with
SGI Accelerate. It implements user defined I/O buffer caches to avoid the operating system ones
from thrashing when running multiple I/O intensive jobs or processes. This can be effective in
Shared Memory Parallel systems or cluster computing environments using DAS or NAS storage
subsystems. FFIO isolates user page caches so jobs or processes do not contend for Linux Kernel
page cache. Hence, FFIO minimizes the number of system calls and I/O operations as echoed
back by the eie_close sync and async values reflecting synchronous calls to disk—which should
be as close to 0 as possible—to and from the storage subsystem and improves performance for
large and I/O intensive jobs. (Ref [1], Chapter 7 Flexible File I/O).

2.4.2 Using only a subset of available cores on dense processors

Two ways of looking at computing systems are either through nodes which are their procurement
cost sizing blocks or through cores which are their throughput sizing factors. When choosing
node metrics, because processors have different prices, clock rates, core counts and memory
bandwidth, optimizing for turnaround time or throughput will depend on running on all or a
subset of cores available. Since licensing charges are assessed by the number of threads or
processes being run as opposed to the actual number of physical cores present on the system, there
is no licensing cost downside in not using all cores available so this may provide performance
enhancement possibilities. The deployment of threads or processes across partially used nodes
should be done carefully with consideration to the existence of shared resources among cores.

2.4.3 Hyper-threading

Hyper-threading (HT) is a feature of the Intel®

Xeon®

processor which can increase performance for
multi-threaded or multi-process applications. It allows a user to run twice the number of OpenMP
threads or MPI processes than available physical cores per node (over-subscription).

Beyond 2 nodes, with LS-DYNA, Hyper-threading gains are negated by added communication
costs between the doubled numbers of MPI processes.

2.4.4 Intel® Turbo Boost

Intel®
Turbo Boost is a feature of the Intel®

Xeon®
processor, for increasing performance by

raising the core operating frequency within controlled limits constrained by thermal envelope.
The mode of activation is a function of how many cores are active at a given moment when MPI
processes, OpenMP or Pthreads are running. At best, Turbo Boost improves performance for low
numbers of cores used, up to the ratio of the maximum frequency over baseline value. As more
cores are used, Turbo Boost cannot increase the frequencies on all of them as it can on fewer

Session # 13th International LS-DYNA Users Conference

1-12

active ones. For example, for a base frequency of 3.0GHz, when 1-2 cores are active, core
frequencies might be throttled up to 3.3GHz, but with 3-4 cores active, frequencies may be
throttled up only to 3.2 GHz. For computational tasks, utilizing Turbo Boost often results in
improved runtimes so it is best to leave it enabled, although the overall benefit may be mitigated
by the presence of other performance bottlenecks outside of the arithmetic processing.

2.4.5 SGI Performance suite MPI, PerfBoost

The ability to bind an MPI rank to a processor core is key to control performance on the multiple
node/socket/core environments available. From [3], ‘3.1.2 Computation cost-effects of CPU
affinity and core placement [...]HP-MPI currently provides CPU-affinity and core-placement
capabilities to bind an MPI rank to a core in the processor from which the MPI rank is issued.
Children threads, including SMP threads, can also be bound to a core in the same processor, but
not to a different processor; additionally, core placement for SMP threads is by system default
and cannot be explicitly controlled by users.[...]’.

In contrast, SGI MPI, through its ‘omplace’ option enforces accurate placement of Hybrid MPI
processes, OpenMP threads and Pthreads within each node. SGI MPI's bundled PerfBoost facility
linklessly translates P-MPI, IntelMPI, OpenMPI calls on the fly to SGI MPI calls.

2.4.6 SGI Accelerate LibFFiO

LS-DYNA/MPP/Explicit is not I/O intensive and placement can be handled by SGI MPI,
therefore, libFFIO is not necessary. However, LS-DYNA/MPP/Implict does involve I/O so
libFFIO can compensate for bandwidth contention on NAS or slow drive systems.

3.0 Benchmarks description
The benchmarks used are the three TopCrunch (http:www.topcrunch.org) dataset--created by
National Crash Analysis Center (NCAC) at George Washington University. The TopCrunch
project was initiated to track aggregate performance trends of high performance computer
systems and engineering software. Instead of using a synthetic benchmark, an actual engineering
software application, LS-DYNA/Explicit, is used with real data. Since 2008, SGI has held top
performing positions on the three datasets. The metric is: Minimum Elapsed Time and the rule is
that all cores for each processor must be utilized.

LS-DYNA/Implicit [4], [5] has been covered in [7][8][9][10].

3.1 Neon Refined Revised

Vehicle based on 1996 Plymouth Neon crashing with an initial speed 31.5 miles/hour, (Figure 8).
The model comprises 535k elements, 532,077 shell elements, 73 beam elements, 2,920 solid
elements, 2 contact interfaces, 324 materials. The simulation time is 30 ms (29,977 cycles) and
writes 68,493,312 Bytes d3plot and 50,933,760 Bytes d3plot [01-08] files at 8 time steps from
start to end point (114MB).

13th International LS-DYNA Users Conference Session: Computing Technology

 1-13

Figure 8: Neon Refined Revised

3.2 Three Vehicle collision

Van crashing into the rear of a compact car, which, in turn, crashes into a midsize car (Figure 9)
with a total model size of 794,780 elements, 785,022 shell elements, 116 beam elements, 9,642
solid elements, 6 contact interfaces, 1,052 materials, and a simulation time of 150 ms (149,881
cycles), writing 65,853,440 Bytes d3plot and 33,341,440 Bytes d3plot[01-19] files at 20 time
steps from start to end point (667MB). The 3cars model is difficult to scale well: most of the
contact work is in two specific areas of the model, and so is hard to evenly spread that work out
across a large number of processes. Particularly as the ”active” part of the contact (which part is
crushing the most) changes with time, so the computational load of each process will change
with time.

Figure 9: Three Vehicle Collision

4.3 car2car

Angled 2 vehicle collision (Figure 10). The vehicle models are based on NCAC minivan model
with 2.5 million elements. The simulation writes 201,854,976 Bytes d3plot and 101,996,544
Bytes d3plot[01-25] files at 26 time steps from start to end point (2624MB).

Figure 10: Car2car

5. Results

Session # 13th International LS-DYNA Users Conference

1-14

5.1 Introduction

Traditionally, benchmarking has been concerned with turnaround time as seen in
following section.

5.2 Minimizing turnaround times

5.2.1 Looking up results on TopCrunch.org

Shortest elapsed times are frequently posted on topcrunch.org. To access them:

A)Browse TopCrunch.org, select `Results', and use pull downs to select as shown on figure 11:

1. neon_refined_revised, (*not* the obsolete neon_refined),or

2. 3 Vehicle Collision or

3. car2car

B)Click on Search for each dataset as shown on figure 11.

C) Compare results across vendors, computer models, processors, interconnects and number of
cores as shown in following sections.

Figure 11: TopCrunch.org menus pull downs

5.2.2 Neon_refined_revised

For same number of cores and processes (640), SGI ICE X presents 20% better performance
over first competing entry. (Figure 12)

13th International LS-DYNA Users Conference Session: Computing Technology

 1-15

Figure 12: neon_refined_revised TopCrunch.org results page

5.2.3 3cars
For lower number of cores and processes (560 vs 640), SGI ICE X presents 11% better performance over
first competing entry. (Figure 13)

Session # 13th International LS-DYNA Users Conference

1-16

Figure 13: 3cars TopCrunch.org results page

5.2.4 car2car

For similar number of cores and processes (2000), SGI ICE X withMellanox® industry standard
Infiniband presents comparable performance with proprietary interconnects (Figure 14).

Figure 14: car2car TopCrunch.org results pages

5.2.5 Car2Car tuning

Figure 15 shows how going from Double to Single Precision when possible can affect
performance. LS-DYNA's version chosen can also affect results as mentioned in 2.1 when going
back to R3.2.1. Then adjusting the otherwise automatic decomposition can improve results [1].
Lastly, Turbo Boost as described in 2.4.4 and dual rail [6], further improve performance where
last entry cumulates Single Precision, R3.2.1, custom decomposition, Turbo Boost mode and
dual rail.

13th International LS-DYNA Users Conference Session: Computing Technology

 1-17

Figure 15: Car2car tuning

5.2.6 Car2Car resource usage

Linux collectl/colplot was first run on the first compute node to verify CPU usage and correct
placement on physical cores instead of virtual ones since HyperThreading is not desired. Figure
16 shows full CPU utilization for cores 0,1 and 18,20 and none for subsequent virtual cores
20,21.

Double Precision
R6.1.2

R7.1.0
R3.2.1

decomp
Turbo

2 IB RAILS

0
500

1000
1500
2000
2500
3000
3500
4000

car2car tuning

Elapsed seconds

Session # 13th International LS-DYNA Users Conference

1-18

Figure 16: Core usage from 0 to 39

5.2.7

5.2.7 Car2Car MPI profiling

SGI MPInside [11] was run to get basic profiling and construct the area plot stack across all
2000 MPI processes attributed to computation time and MPI calls. Figure 17 shows elapsed
seconds on the Y axis for the complete range of ranks 0 to 1999. the light purple, teal and dark
bands indicate that across all ranks, a little less than half of the running time was compute, with
the majority of the communication time spent in Bcast and Recv calls.

Figure 17: Cumulative area plot stack from SGI MPInside

13th International LS-DYNA Users Conference Session: Computing Technology

 1-19

The histogram of the request sizes distribution for rank first to last from which previous plot is
available. Rank 1999 is shown on Figure 18 showing expensive Recv and Bcast in 128-256 and
0-32 bytes message length bands, respectively.

>>> Rank 1999 Sizes distribution <<<

Sizes Recv Send Isend Irecv Barrier Bcast

65536 0 0 0 0 0 5260

32768 2455 0 0 0 0 2

16384 7145 0 0 0 0 114

8192 1801 0 78 0 0 11

4096 599 480 52 480 0 14

2048 247232 481402 105 241421 0 6

1024 1202253 721867 240035 721866 0 14

512 719944 960892 1679946 960891 0 25

256 9560 959955 7203 959951 0 3

128 967133 959935 242591 479972 0 21

64 2391 239990 491788 239989 0 1

32 2401 1 23956 0 0 12

0 3629915 4 3610941 0 3272 292692

>>> Rank 1999 Size distribution times<<<

Sizes Recv Send Isend Irecv Barrier Bcast

65536 0 0 0 0 0 3.00101

32768 0.01090 0 0 0 0 0.00018

16384 0.03185 0 0 0 0 0.00626

8192 0.00384 0 0.00013 0 0 0.22016

4096 0.00112 0.00058 5E−05 0.0002 0 0.00012

2048 38.9114 0.48212 8.1E−05 0.12406 0 3.2E−05

1024 3.25882 0.61298 0.17572 0.94710 0 0.00224

512 0.52911 0.53767 1.83301 0.37697 0 0.00012

256 0.17519 0.50377 0.00457 0.59256 0 0.00043

128 307.803 1.04413 0.30725 0.14172 0 0.00561

64 0.04047 0.11488 0.52372 0.07279 0 48.5074

32 0.00169 0 0.03405 0 0 0.37118

0 22.2937 0.00038 40.7483 0 0.23487 302.809

Figure 18: Histogram of the request sizes and times distribution

The distribution of Bcast requests and times of messages in band 0-32 Bytes of 292692 requests
for 303 seconds was used to target SGI MPI optimizations heuristics to improve time. As a
result, the same Bcast requests saw their times reduced to, 284 for an overall elapsed time
decrease from 1400 to 1367 seconds.

Session # 13th International LS-DYNA Users Conference

1-20

"Compute" time as measured by MPInside is the time that a given rank spent that wasn't
attributable to a profiled MPI call. It could be time that the rank is busy doing something besides
communication, possibly leading to increased total run time, or that rank could be blocked on an
MPI call waiting for some other rank to catch up. Profiling with `MPINSIDE_EVAL_SLT=y`
and `MPINSIDE_EVAL_COLLECTIVE_WAIT=y` will help find out whether wait time is a
significant factor, i.e. whether collectives like Bcast spend a significant amount of time waiting
for slower ranks to arrive. Adding a feature to MPInside or integrating with another profiling tool
like perf or oprofile in a future release will allow to isolate idle time within the compute times
intervals.

This will help gain more specific insights into how much of the observed differences in send late
time and collective barrier time are due to computational load imbalance.

Considering Recv and Bcast times, if a lot of send late time in Recv (large time in w_MPI_Recv
column of MPInside output) or a lot of waiting for synchronization at the start of Bcast (large
value in b_Bcast column) are seen, then optimization efforts could focus on areas of the code
where differences in the compute time might reflect a load imbalance. Also, if there is other
meaningful work a rank could do while waiting, there might be some performance to be gained
by overlapping communication and computation with MPI_Ibcast (new in MPT 2.10) or
MPI_Irecv and delaying blocking until work can't proceed without more data.

MPInside reports such as the one above are also available with the communication modeled
instead of being measured. In particular MPInside is able to tell what will be the communication
with a perfect interconnect. Knowing this asymptotic value is very useful. It can tell if it worth
trying optimizing, trying other library, enhancing the hardware for a particular application.

Times on a perfect interconnect (MPINSIDE_MODEL=PERFECT+1.0) for Recv and Bcast will
probably be much lower but still nonzero. The time that remains is attributable to waiting on one
or more ranks on the other end of the Recv or Bcast to catch up - similar to SLT or collective
waiting time, but might be shorter if zero transfer time in between compute intervals leads to the
ranks being in closer synchronization. SGI mpiplace might be able to speed up execution by
mapping ranks to a different sequence of nodes based on rank to rank matrix signature of
communications obtained by MPInside to minimize inter node and inter switch transfer costs.

6. Maximizing throughput

6.1 Introduction

In a production environment, throughput is more important than turnaround time of individual
jobs except for the exception case of high priority task which needs to be accomplished in the
shortest delay. An HPC computation center might comprise some number of shared memory
systems and cluster systems. Each of these systems have a total number of cores. The
throughput optimization consists in deploying the jobs to be performed on varying numbers of

13th International LS-DYNA Users Conference Session: Computing Technology

 1-21

cores across these systems while not oversubscribing. Jobs to be performed fall into several
cases in terms of their respective serial elapsed time. Often, an analyst, within a given
production cycle will handle one such case.

6.2 Nomenclature for a throughput environment

Following are variables and parameters used to describe the throughput environment:

 system: either a Shared Memory System or cluster enclosing a total of
NbCoresSystem. system=1,NbSystems

 NbSystems: Total number of above system's

 NbCoresSystem: Number of cores comprised by a given system

 case: a given class of dataset showing a similar Elapsed1Case serial elapsed time

 NbCases: Total number of above case's

 job: a particular job, which will belong to a particular case, job=1,NbJobsCase

 NbJobsCase: Total number of above job belonging to a given case.

 Elapsed1Case: serial elapsed time of a particular case.

 CoresJob: number of cores chosen for a particular job

 ElapsedCoresCase: Elapsed time of a particular case when executed over some

number of cores.

 ElapsedCoresJobCase: Elapsed time for a given job deployed over

coresJobCase.

Derived variables:

 RateCoresCase=1/ElapsedCoresCase

 RateCoresJobCase=1/ElapsedCoresJobCase

An approximate linear relationship can be postulated between jobs running on a certain number
of cores versus 1 core (serially):

 ElapsedCoresCase=Elapsed1Case/coresCase

 ElapsedCoresJobCase=Elapsed1Case/coresJobCase

Thus,

RateCoresCase=coresCase/Elapsed1Case

Session # 13th International LS-DYNA Users Conference

1-22

RateCoresJobCase=coresJobCase/Elapsed1Case

A metric to maximize would be:

 Throughput = ∑case=1,NbCases ∑job=1,NbJobsCase RateCoresJobCase

=∑case=1,NbCases ∑job=1,NbJobsCase coresJobCase/Elapsed1Case

Subject to the constraints:

 For job=1,NbJobsCase For case=1,NbCases; [coresJobCase>=1] which

reflects that any job will be deployed on at least 1 core.

 ∑case=1,NbCases ∑job=1,NbJobsCase coresJobCase <= NbCoresSystem

 which reflects that total cores of jobs summed across cases must fit within the number of cores
available in a system

6.3 Optimization method

Maximizing throughput from the preceding section is a Linear Programming (LP) problem [10]
which is defined as finding the maximum or minimum value of a linear expression

ax + by + cz + . . .

(called the objective function), subject to a number of linear constraints of the form

Ax + By + Cz + . . .≤ N

or

Ax + By + Cz + . . .≥ N.

The largest or smallest value of the objective function is called the optimal value, and a
collection of values of x, y, z, . . . that gives the optimal value constitutes an optimal solution.
The variables x, y, z, . . . are called the decision variables.

The Simplex method [12] to solve Linear Programming problems has been implemented as an
online solver here: http://www.zweigmedia.com/RealWorld/simplex.html as shown in Figure 19.

13th International LS-DYNA Users Conference Session: Computing Technology

 1-23

Figure 19: Online Simplex Method Implementation

6.4 Examples

6.4.1 One case, multiple jobs

In this example, there is only 1 system with 40 cores on which one wants to allocate 4 jobs:

NbSystems=1

NbCores1=40

NbCases=1

NbJobs1=4

ElapsedCoresCase: Elapsed1=1000 seconds

Throughput = cores1/1000+cores2/1000+cores3/1000+cores4/1000

Corresponding template and results are shown in figure 20 where the extra 3 constraints impose
an equality between the 4 jobs.

F
i
g
u
r
e
2
0

Figure 20: One case, multiple jobs throughput example

Session # 13th International LS-DYNA Users Conference

1-24

6.4.2 Three cases, one job/case

In this example, there is only 1 system with 40 cores on which one wants to allocate 1 job for 3
different cases:

NbSystems=1

NbCores1=40

NbCases=3

NbJobs1=1 NbJobs2=1 NbJobs3=1

ElapsedCoresCase: Elapsed11=1000 Elapsed12=5000
Elapsed13=12000

Throughput=cores1/Elapsed11+cores2/Elapsed12+cores3/Elapsed13

Corresponding template and results are shown in figure 21 where the extra 2 constraints impose
an equality between the 3 jobs.

Figure 21: Three cases, one job per case throughput example

6.4.3 Three cases, several jobs/case

In this example, there is only 1 system with 80 cores on which one wants to allocate 4, 3 and 2
jobs for 3 different cases, respectively:

NbSystems=1

NbCores1=80

NbCases=3

NbJobs1=4 NbJobs2=3 NbJobs3=2

ElapsedCoresCase: Elapsed11=1000 Elapsed12=5000 Elapsed13=12000

Throughput=cores11/Elapsed11+cores21/Elapsed11+cores31/Elapsed11
+cores41/Elapsed11+cores12/Elapsed12+cores22/Elapsed12+cores32/E
lapsed12+cores13/Elapsed13+cores23/Elapsed13

13th International LS-DYNA Users Conference Session: Computing Technology

 1-25

Corresponding template and results are shown in figure 22 where the extra constraints impose
minimum rates for each case.

Figure 22: Three cases, several jobs per case throughput example

6.4.4 Three systems, three cases, several jobs/case

In this example, first system is a UV 2000 (1.3) with 512 cores, second system is a Rackable
cluster (1.1) with 64 nodes of 24 cores each and third system is an ICE X cluster (1.2) with 288
nodes of 20 cores each. One wants to allocate 4, 3 and 2 jobs for 3 different cases, respectively
on these three systems:

NbSystems=3

NbCores1=512 NbCores2=64*24 NbCores3=288*20

NbCases=3

NbJobs1=4 NbJobs2=3 NbJobs3=2

ElapsedCoresCase: Elapsed11=1000 Elapsed12=5000 Elapsed13=12000

Throughput=cores11/Elapsed11+cores21/Elapsed11+cores31/Elapsed11
+cores41/Elapsed11+cores12/Elapsed12+cores22/Elapsed12+cores32/E
lapsed12+cores13/Elapsed13+cores23/Elapsed13

Corresponding template and results are shown in figure 23 where the extra constraints impose
minimum rates for each case.

Session # 13th International LS-DYNA Users Conference

1-26

Figure 23: Three systems, three cases, several jobs/case

Optimal Solution: p = 1.2992; cores11 = 128, cores21 = 128,
cores31 = 128, cores41 = 128, cores12 = 512, cores22 = 512,
cores32 = 512, cores13 = 2880, cores23 = 2880

6. Conclusions

This study showed how interconnect, processor architecture, core frequency, Turbo Boost, and
hyper-threading effects on turnaround and throughput performance can be gauged for LS-DYNA
runs. All these effects are seen to be dependent on the datasets and solution methods used.
Procurement of the right mix of resources should therefore be tailored to the mix envisaged.
Upgrading a single system attribute like CPU frequency, interconnect, or number of cores,
diminishes returns if the others are kept unchanged. Elapsed time performance can be translated
into derived metrics such as turnaround times or throughput and the cost to achieve them can be
broken up into acquisition, licensing, energy, facilities and maintenance components.

7. Attributions

LS-DYNA, is a registered trademark of Livermore Software Technology Corp. SGI, Rackable, NUMAlink, SGI Ice X,
SGI UV, ProPack are registered trademarks or trademarks of Silicon Graphics International Corp. or its subsidiaries
in the United States or other countries. Xeon is a trademark or registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries. Linux is a registered trademark of Linus Torvalds in several
countries. SUSE is a trademark of SUSE LINUX Products GmbH, a Novell business. All other trademarks mentioned
herein are the property of their respective owners.

References
[1] LS-DYNA®, KEYWORD USER'S MANUAL, VOLUME I, Appendix O, August 2012,
Version 971 R6.1.0

[2] SGI. Linux Application Tuning Guide. Silicon Graphics International, California, 2009.

[3] Yih-Yih Lin and Jason Wang. “Performance of the Hybrid LS-DYNA on Crash Simulation
with the Multicore Architecture”. In 7th European LS-DYNA Conference, 2009.

13th International LS-DYNA Users Conference Session: Computing Technology

 1-27

[4] Dr. C. Cleve Ashcraft, Roger G. Grimes, and Dr. Robert F. Lucas. “A Study of LS-DYNA
Implicit Performance in MPP”. In Proceedings of 7th European LS-DYNA Conference, Austria,
2009.

[5] Dr. C. Cleve Ashcraft, Roger G. Grimes, and Dr. Robert F. Lucas. “A Study of LS-DYNA
Implicit Performance in MPP (Update)”. 2009.

[6] Olivier Schreiber, Michael Raymond, Srinivas Kodiyalam, LS-DYNA® Performance
Improvements with Multi-Rail MPI on SGI® Altix® ICE cluster, 10th International
LS-DYNA® Users Conference, June 2008
 [7] Olivier Schreiber, Scott Shaw, Brian Thatch, and Bill Tang. “LS-DYNA Implicit Hybrid
Technology on Advanced SGI Architectures”. http://www.sgi.com/pdfs/4231.pdf, July 2010.
 [8] Olivier Schreiber, Tony DeVarco, Scott Shaw and Suri Bala, `Matching LS-DYNA Explicit,
Implicit, Hybrid technologies with SGI architectures’ In 12th International LS-DYNA
Conference, May 2012.

[9] Leveraging LS-DYNA Explicit, Implicit, Hybrid technologies with SGI hardware, Cyclone
Cloud Bursting and d3VIEW, Olivier Schreiber*, Tony DeVarco*, Scott Shaw* and Suri Bala†
*SGI, †LSTC, 9th European Users Conference, 3-4th June 2013-Manchester, UK
[10]Leveraging LS-DYNA Explicit, Implicit, Hybrid Technologies with SGI hardware and d3VIEW Web
Portal software, Olivier Schreiber*, Tony DeVarco*, Scott Shaw* and Suri Bala† *SGI, †LSTC
http://www.sgi.com/pdfs/4426.pdf, August 2013

[11] Daniel Thomas, Jean-Pierre Panziera, John Baron: MPInside: a performance analysis and
diagnostic tool for MPI applications. WOSP/SIPEW 2010: 79-86, ACM, (2010)
http://www.sgi.com/products/software/sps.html

[12] Finite Mathematics, Finite Mathematics & applied Calculus, Sixth Edition, Waner,
Costenoble, An Internet Resource for Students and Instructors, Illinois State U, Eastern
Michigan U, Michigan State U, Oakland CC, Arizona State U, SUNY Oswego, U of Texas EP,
FiniteMath.org, AppliedCalc.org, FiniteAndCalc.org

