
13th International LS-DYNA Users Conference Session: Computing Technology 

 1-1 

Improving Performance of LS-DYNA® Crash Simulation 
with Large Deformation 

by Modifying Domain Decomposition 
 

Shota Yamada 
Technical Computing Solutions Unit, Fujitsu Limited 

9-3 Nakase 1Chome Mihama, Chiba, 261-8588, Japan 
 
 

Abstract 
 
In modern high performance computing era, parallel computing has been a trend to improve the 
speed of computation.  In the past we have found that just simply increasing the number of 
computing parallelism would not guarantee to achieve better performance especially when 
simulating large deformation using hundreds or more number of parallel processors.  Through 
our past experience, to improve the computational performance, we had found it was necessary 
to tackle on the issue of load unbalance of calculation cost among processors and to seek for 
better strategy in domain decomposition. 
 
In general, calculation cost increases with respect to the extent of deformation.  To reduce the 
unbalance of calculation cost among processors, ideally we would like to decompose domain to 
subdomains with same extent of deformation on all processors.  Even it is possible, it would be 
difficult to achieve such ideal decomposition for the cases with only local deformation occurred 
in crash simulation.  Therefore we come up with a new enhanced method to decompose the 
model by distributing calculation cost more uniformly in crash simulation.  In this paper, I will 
reveal this enhanced method, present the results of improved performance of this method using 
several models of crash simulation, and discuss the efficiency of this method. 

 
 

1. Introduction 
 

Nowadays the major manufacturers have utilized analytical simulation during the product 
development stages in order to reduce development cost, to cut down developing time, and to 
enhance development capability.  The engineers have been constantly seeking for better 
analytical accuracy of the simulation in order to match the experimental data obtained through 
testing the prototype of products.  For such demand results detailed mathematical models with 
increased number of elements used for simulation, which in turns puts pressure on better 
computational power for faster analytical job turnaround.  Besides refined and more efficient 
software algorithms, parallel computation using multiple processors to handle a single job 
becomes the trend of modern crash simulation.  It has been experienced that parallel efficiency 
worsens when number of processors increased.  Such adverse effect becomes especially more 
critical in the highly parallel computing environment with hundreds or more processors. 
 
For the highly parallel system, load unbalance has been the major cause of performance 
bottleneck.  The load unbalance could be caused by unequal calculation amount decomposed to 



Session: Computing Technology 13th International LS-DYNA Users Conference 

1-2 

each processor, or due to unbalance in calculation and communication. Such difficulty gets more 
profound when the analytical models have only local deformation like crash simulation with 
large deformation.  It has been recognized that it is extremely difficult to deal with such load 
unbalance issue when hundreds or more processors are utilized. 
 
This paper reports the effect of speedup once the load unbalance issues of various models of 
crash simulation with large deformation has been addressed with a new method; then followed 
with examination for the efficiency of this method.  The issues of load unbalance were examined 
in Section 2. Section3 discusses mechanism of various domain decomposition methods applied 
to solve these load unbalance issue.  The efficiency in performance improvement with these 
methods is discussed in Section 4.  The future work and summary are discussed in Section 5. 

 
 

2. Issues of Load Unbalance 
 

An ODB model with about 10 million elements as shown in Figure 1 is used to study how severe 
that load unbalance can be.  The simulation time starts right at the beginning of contact until 40 
milliseconds.  Such duration is long enough for crash simulation. 
 

 
Figure 1. Images of ODB Model for Crash Simulation 

 
Figure 2 shows load unbalance of calculation time with respect to domain decomposition using 
48 parallel processors.  The horizontal axis represents No. of Processors and the vertical axis 
shows the Calculation Time.  The calculation time referred at here does not include those of 
communication time and wait time.   Each subdomain is allocated to one processor sequentially 
from the bottom of Y-direction in the domain decomposition. 
 

 
Figure 2. Calculation Load Unbalance and Domain Decomposition 

 

simulation time : 0 milliseconds simulation time : 40 milliseconds 

Load unbalance rate = 44.4% 

upper number of processor 

lower number of processor 



13th International LS-DYNA Users Conference Session: Computing Technology 

 1-3 

Fig.2 reveals some subdomains have relative high calculation time (No.18 and 33, etc.) and some 
have short calculation time (No.2 and 46, etc.). Such load unbalance greatly hinders the expected 
efficiency of parallel computation, since those processors with longer calculation time become 
the bottleneck for better performance.  Perfect domain decomposition would allocate same 
calculation amount to each processors for better performance.  Due to the load unbalance, those 
processors with shorter calculation time have to wait for those processors allocated with heavier 
calculation amount to finish.  Such wait times within the wall clock time are induced mostly by 
the calculation load unbalance, therefore it is reasonable to consider the rate of wait time as 
equivalent to the rate of load unbalance.  At here the load unbalance rate can be estimated as 
following, 
 
Tavg = Σ (Ti)/N,  
Load Unbalance Rate = [Max(Ti) – Tavg]/ Tavg 
where  i=1, N 
 N is the number of processors. 
 
This load unbalance rate would disappear once the issue of load unbalance has been resolved.  
Hence it can be regarded as the rate of expected speedup in tuning for better domain 
decomposition.  The load unbalance rate of the above example is 44.4%. 
 
As illustrated in Figure 3, the calculation amount of each processor is tightly relating to the 
extent of deformation of each subdomain.  Those subdomains suffer larger deformation spend 
more calculation time.  Such load unbalance eventually forms the performance bottleneck.  The 
engineer can uniformly distribute the calculation cost among all the subdomains if the extent of 
deformation of each subdomain is predictable.  
 

 
Figure 3. Calculation Amount and Extent of Deformation of Each Subdomain. 

 
But it is very difficult to predict deformation of each subdomain in advance.  Hence for the case 
having local deformation like the ODB model as shown above, it is a challenge to achieve well 
load balanced situation using some domain decomposition methods. 
 
 

3. Method of Resolving Load Unbalance Issue 
 

This section proposes a new method of domain decomposition which can reduce the load 
unbalance caused by large local deformation. 
 



Session: Computing Technology 13th International LS-DYNA Users Conference 

1-4 

The domain decomposition that LS-DYNA currently uses is to distribute elements to each 
subdomain automatically based on some options that users configure.  Based on the built-in 
calculation amount table, LS-DYNA evaluates some parameters relating to the calculation 
amount at initial state like data definition of each element, number of elements, etc. then 
distributes elements to ensure that each subdomain has uniform calculation time.  Since          
LS-DYNA does not know the deformation in advance, following factors are not taken into 
consideration at the time of domain decomposition at the initial state: extent of element 
deformation, increment of calculation amount due to deformation, etc.  If the users of LS-DYNA 
do not consider the deformation of model in advance and configure domain decomposition 
options with assumption that calculation amount of each subdomain remains equally through the 
whole analysis, as illustrated in Figure 4, the situation of load unbalance eventually becomes 
worst when deformation of some subdomains progress. 
 

                  
Figure 4. Propagation of Load Unbalance as Deformation Progress 

 
LS-DYNA employs RCB (Recursive Coordinate Bisection) method by carrying out domain 
decomposition based on the longest evaluated XYZ direction.  LS-DYNA provides various 
options that user can configure to apply this domain decomposition procedure.  The SX/SY/SZ 
options are the most general options used to arrange order of direction to decompose, which 
recursively halves the model using the longest dimension of the input model.  The ODB model 
of the previous example was configured with SY1000 for decomposition, so the domain 
decomposition was carried out only into the Y direction.  There are several other options that 
users can utilize, e.g. radial direction decomposition, decompose in each predefined area, etc.  In 
order to achieve a good load balance situation by distributing deformed element uniformly as 
shown in Figure 5, users have to learn these methods by trial-and-error. 
 

                  
Arrange domain decomposition to distribute deformation uniformly 

Figure 5. Distributing the Extent of Deformation with the Original Method 
 

Time 
elapse 



13th International LS-DYNA Users Conference Session: Computing Technology 

 1-5 

For those models only has local deformation like the previous ODB model, trying to distribute 
the deformation extent uniformly on all subdomains become very complicate and difficult to 
carry out correction using the current options of the original configuration method. The author 
has enhanced the domain decomposition by correcting element distribution for all subdomains.  
This method readjusts the domain decomposition by allocating more elements with less 
deformation in a subdomain, and those subdomains having large deformed elements allocated 
with less total number of elements.  Figure 6 illustrates the distribution of elements using this 
enhanced domain decomposition. 
 

                  
Correct Element distribution directly 

Figure 6. Redistributing Elements with the Newly Enhanced Method 
 
Applying this enhanced domain decomposition on the aforementioned ODB model; the 
distribution of elements to each subdomain has been readjusted as expected.  Figure 7 shows 
those subdomains in Zone B with larger deformed element have less total number of element per 
domain; each subdomain in Zones A and C with less deformed element has more total number of 
element allocated. 
 

 
Figure 7. No. of Elements Re-adjusted in Each Domain with Enhanced Method 

 
 

4. Improving effect 
 

In addition to the above ODB model, four more test models are used to verify the effectiveness 
of this enhanced decomposition method.  The four models used in this study are MDB model, 
Six Cars model, Neon model and 3Cars model.  Detail descriptions about these four models are 
available to the public and can be found on the websites listed in Reference [1] and [2]. 
 

A B C 

A 

B 

C 



Session: Computing Technology 13th International LS-DYNA Users Conference 

1-6 

 
Figure 8. MDB Model 

 

 
Figure 9. Six Cars Model 

 
Default option of domain decomposition is used for MDB and Six Cars models.  So these two 
models are decomposed from the longest axis in X-Y-Z direction sequentially. 
 

 
Figure 10. Neon Model 

 

 
Figure 11. 3Cars Model 



13th International LS-DYNA Users Conference Session: Computing Technology 

 1-7 

 
The decomposition for Neon and 3Cars models is carried out with SY1000 option.  Hence 
decomposition is done only in the Y-direction similar to the ODB model.  These full wrap frontal 
crash models deform relatively uniformly in one direction, so it is considered rather easy to 
distribute deformed elements to subdomains equally only by considering order of decomposition. 
 
Figures 12 to 16 present the effect of the enhanced domain decomposition on the performance of 
these five models.  The chart on the left side of each figure shows change of load unbalance.  
Dotted line represents value of original domain decomposition; solid line represents the value of 
newly enhanced domain decomposition.  The table on the right side of each figure presents 
change of elapsed times of both decomposition method as well as the rate of speedup of the 
enhanced domain decomposition on each category of computation. 
 

current new
Element 72090 54112 -17978 -21%
Contact 13211 15329 2118 2%
Rigid 1962 2209 247 0%
Other 386 402 16 0%
Elapsed 87649 72051 -15598 -18%
Unit : second

rate of speedup

 
Figure 12. Change of load unbalance and elapsed time (ODB) 

 

current new
Element 4596 3794 -802 -12%
Contact 1872 1670 -202 -3%
Rigid 374 414 39 1%
Other 38 36 -2 0%
Elapsed 6880 5913 -967 -14%
Unit : second

rate of speedup

 
Figure 13. Change of load unbalance and elapsed time (MDB) 

 

current new
Element 1747 1736 -10 0%
Contact 739 666 -72 -3%
Rigid 92 95 3 0%
Other 133 130 -3 0%
Elapsed 2710 2627 -83 -3%
Unit : second

rate of speedup

 

 Load unbalance rate = 44% 
 

9%

 Load unbalance rate = 29% 
 

10%

 Load unbalance rate = 13% 
 

8%



Session: Computing Technology 13th International LS-DYNA Users Conference 

1-8 

Figure 14. Change of load unbalance and elapsed time (Six Cars) 
 

current new
Element 125 126 1 1%
Contact 51 49 -1 -1%
Rigid 33 33 0 0%
Other 10 10 0 0%
Elapsed 219 219 0 0%
Unit : second

rate of speedup

 
Figure 15. Change of load unbalance and elapsed time (Neon) 

 

 

current new
Element 1528 1558 31 1%
Contact 1043 1045 2 0%
Rigid 353 353 0 0%
Other 29 31 2 0%
Elapsed 2953 2987 34 1%
Unit : second

rate of speedup

 
Figure 16. Change of load unbalance and elapsed time (3Cars) 

 
Overall, depending on the severity of load unbalance, this enhanced domain decomposition 
method is able to reduce the load unbalance more than 50%.  For those with large local 
deformation like ODB and MDB models, the above results demonstrate the enhanced domain 
decomposition speeds up job turnaround time by 15-20% through improving load unbalance.  
For the full frontal contact cases like Neon and 3Cars models, the original domain decomposition 
has already distributed the large deformation elements to each subdomain uniformly, therefore 
the benefit of the enhanced domain decomposition do not show on the elapsed time. 
 
Figure 17 reveals the effect of job speedup relative to the original load unbalance using the 
information gathered from the above five models.  Although the enhanced domain 
decomposition method can reduce load unbalance for all five models, this enhanced method has 
better impact in speeding up job turnaround on those models having more than 15% of load 
unbalance. 
 

 Load unbalance rate = 11% 
 

5%

 Load unbalance rate = 9% 
 

3%



13th International LS-DYNA Users Conference Session: Computing Technology 

 1-9 

 
Figure 17. Relationship of Speedup Rate and Original Load Unbalance 

 
 

5. Summary and Future Work 
 

The enhanced domain decomposition developed by the author at Fujitsu can reduce load 
unbalance significantly.  Such improvement leads to better job turnaround for the problems with 
large local deformation like ODB and MDB models.  In analytical simulations for optimization 
of product structure, user executes a huge number of cases by changing data definition little by 
little for the same model.  The basic characteristics of deformation and load balance of the model 
should not change dramatically.  Hence this enhanced method would provide huge advantage to 
all the jobs during the product design cycle. 
 
IIHS added small overlap front test for the evaluation of a vehicle’s crashworthiness in 2012 [3].  
Such test primarily affects a vehicle’s outer edges not protected by the crush zone structures and 
resulting extensive local deformation, too.  This enhanced decomposition method should offer 
certain benefit to the LS-DYNA users when handling the small overlap front crash simulation. 
 
Unfortunately not all models can enjoy such benefit.  Those models with uniform deformation in 
one direction, such as Neon model and 3Cars model, already have relative low load unbalance 
with the original decomposition method.  Hence users of LS-DYNA cannot expect speedup with 
this enhanced method. 
 
This enhanced method provides a critical step to distribute equal amount of calculation amount 
to all computing processors.  The times used in this paper are the accumulation of calculation 
time of all processors after many iterative cycles of analysis.  In order to improve job turnaround 
time beyond this study, it is necessary to look into detail of the iteration, investigate the 
mechanism of synchronization at each analytical cycle, investigate the communication patterns 
of LS-DYNA on the stages of Element, Contact, and Rigid in detail.  LSTC has been constantly 
enhancing LS-DYNA over the years.  Several features have been developed to improve the 
performance of these computing stages.  For example, the feature of ‘groupable contact’ [4] 
improves the performance when a model involves multiple contact definitions.  It is worthwhile 
to go through these features and check their impact on the performance by combining these 
features and to seek for enhancement. 
 
The demand of computing power to deal with much more complicate and bigger model from the 
users of LS-DYNA has been growing continuously.  Using a parallel system with hundreds or 

 Worst 
 
 
 
 
 
 
Better 



Session: Computing Technology 13th International LS-DYNA Users Conference 

1-10 

more processors to tackle one job has become a norm among the community of LS-DYNA.  The 
author will continue his effort to enhance the performance of LS-DYNA. 
 
 
 

References 
 

[1] http://www.topcrunch.org/ 
[2] http://www.ncac.gwu.edu/ 
[3] http://www.iihs.org/iihs/ratings/ratings-info/frontal-crash-tests 
[4] Brian, W.: Efficient Processing of Multiple Contacts in MPP DYNA, 8th European     
LS-DYNA Users Conference, Strasbourg, 2011Text 
 
 

Acknowledgement 
 

The author would like to express his gratitude to LSTC for their constant support. 
 


