x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Key Parameters in Blast Modeling Using 2D to 3D ALE Mapping Technique

A numerical simulation is conducted to model the explosive detonation and blast wave propagation in the open air field. The mesh size and boundary conditions as well as size of air domain are the sensitive variables which may significantly affect the predicted pressure wave magnitude and rising time in blast simulations. The current approach focuses on determining the optimal key parameters to predict the blast wave accurately. A 2D to 3D mapping is performed to save the computational time. The blast induced high pressure waves are generated using the Arbitrary Lagrangian-Eulerian (ALE) formulation in the 2D domain and then mapped into a 3D space. The simulation results show that the aforementioned parameters govern pressure wave form in both 2D and 3D cases. A two-step mesh sensitivity study is performed: A parametric study is first conducted in the 2D air domain and then followed by a second one in the 3D domain while using 2D to 3D mapping. After that, as a case study in the biomedical applications, an anatomically detailed pig head finite element model is integrated with the 3D air domain to calculate the pressure gradient change inside the brain due to blast wave. The model predictions are compared with the experimental data and it has shown that the modeling strategy used can capture the biomechanical response of the surrogate with reasonable accuracy and reduced computational cost.

application/pdf Blast_096.pdf — 472.6 KB