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1 Abstract 

From 2017 until mid’ 2020, DYNAmore collaborated with various partners from the manufacturing 
industry, universities, independent research institutions, and software vendors to develop a software 
neutral storage format for finite element data. The goal was to define a new standard which allows for 
the flawless exchange of all the required information, enabling the industrial partners to easily 
establish closed simulation process chains for production processes, where various software tools with 
non-consistent data formats have been a barrier in the past. During the project, an interface between 
the mapping tool Envyo® and the established VMAP standard has been realized and validated with 
test cases. 
 
In this paper, an overview on the current status of the released VMAP standard [1] will be provided 
together with an insight into the defined HDF5 [2] based data structure for finite element data storage. 
Based on the example of Envyo® [3] it will be demonstrated how the C++ based VMAP standard 
library can be linked to other software solutions as well – either through direct code import or by linking 
the provided libraries. Small examples will illustrate the VMAP capabilities for simulation data 
exchange and how Envyo® users can benefit from the standardized format which can be used as 
input and output in future releases. 
 

2 Introduction to the VMAP project 

VMAP is the abbreviation for “Virtual Material Modelling in Manufacturing”. The VMAP project started 
in 2017 as a group of more than 25 different companies, research institutions, universities, and 
software vendors from various countries, namely: Austria, Belgium, Canada, Germany, the 
Netherlands, and Switzerland. The goal was to develop a neutral, standardized format for simulation 
result data storage focusing on a flawless transfer of these data from one software tool to another, 
considering that different material modeling approaches might be necessary along the simulation 
process chain. Therefore, a common understanding for the terms and nomenclature being used for 
various material descriptions within the different software tools represented by the software vendors 
had to be created in a first step. This task was accompanied and supported by six use cases which 
should help the consortium to focus on specific aspects on current material modeling problems which 
are relevant for the consideration of several process steps to improve accuracy in the final usability 
analysis. These use cases were [4]: 
 

- Blow Forming 
- Composites for Lightweight Vehicles 
- Injection Molding 

- Impact 
- Foaming 
- Fatigue 
- Creep 

- Additive Manufacturing (AM) Plastics 
- Hybrid Modeling of Consumer Products 
- Composites in Aerospace 

 
The strength of the project was based on the large number of software providing companies 
supporting the consortium during the discussions and the software implementation process. A list of 
software vendor companies and the name of the software which shall support the VMAP standard in 
the future is given in tab. 1. 



As can be seen from tab. 1, various software solutions for either different simulation domains or 
technologies for the data interpretation and transfer between different software tools and simulation 
steps have been involved in the projects which underlines the generality of the defined VMAP 
standard. The DYNAmore GmbH provided their knowledge on LS-DYNA specific definitions of 
element types, in- and out-of-plane integration rules, material descriptions, used coordinate systems 
and LS-DYNA specific result data storage. Furthermore, the mapping tool Envyo has been used for 
first implementations of the developed VMAP standard as a translator (or wrapper) between the LS-
DYNA format and the newly defined VMAP standard allowing for fast in-house code adaptions.  
 

3 Technical aspects of the VMAP standard 

As a vendor neutral data storage container, the Hierarchical Data Format (HDF) 5 [2] has been 
chosen since it is available as an open-source library. Data is stored efficiently through a provided 
programming interface and allows the user to define his own data structure based on groups, sub-
groups, datasets and attached metadata, providing additional information about the datasets or 
containers. Users may also provide information about the type of data being stored in datasets, so 
they can be integer, double, string, or other data types – even compound data types are allowed but 
not very efficient when it comes to in- and output of data. Since information are stored as binary data, 
it is not easily accessible. Therefore, the HDF group provides an additional graphical user interface 
(GUI) called HDFView which allows users to investigate the data structure such as they would do it in 
a regular browser, even allowing them to perform minor changes on the data. All HDF5 data container 
are stored with the file ending *.h5. 
 
The standard specification document [5] provides the main information about how simulation result 
data should be stored inside the HDF5 container. Developers may choose to define either their own 
VMAP I/O routines based on the standard specification document, or to use the VMAP Standard I/O 
Library Application Programming Interface (API) provided by the VMAP Standard Community. The 
latter approach is the most common one and was also used by DYNAmore within the project. The 
VMAP I/O routines have been written in C++, but linkage to other high-level programming languages 
is possible using the “Simplified Wrapper and Interface Generator” (SWIG) [7], such as shown in fig. 1. 
The usage of the latter allowed the software developers of the consortium to contribute to the project 
in their preferred programming language without bothering to much about how their work can be linked 
to the work of others later in the project since SWIG helps to automatically create the linkage between 
C++ interfaces and the target programming languages. 
 

Table 1: List of participating software companies and their software tools as well as the possible 
simulation domain [6]. 

 
Software Vendor/developer Simulation stage 

4a Fibermap 4a engineering Material modeling 
Mapping solution 

ANSA beta-CAE Pre- and Postprocessing 
Mapping solution 

Cadmould Simcon Process simulation 
COMPRO Convergent Process simulation 
Digimat e-Xstream Material modeling 

Mapping solution 

Envyo DYNAmore GmbH Mapping solution 

LS-DYNA DYNAmore GmbH Process simulation 
Structural analysis 

MpCCI Fraunhofer SCAI Mapping solution 

MSC.Marc MSC Structural analysis 
Open-FOAM Open source 

ESI 
Process simulation 

PAM-Crash ESI Structural analysis 

PAM-Form ESI Process simulation 

 



The main files used for the VMAP Standard API are [5]: 
 

- VMAPFile.h: header file which contains the declaration of all in- and output functions of the 
VMAP Standard API being used to read from or write to the *.h5 file. 

- VMAPFile.cxx: source code file for all functions declared in VMAPFile.h 
- VMAP.h: header file which contains all arguments defined as struct reference which can be 

written to and read from the *.h5 file. Furthermore, it contains all necessary constructors and 
destructors as well as get and set functions to assign values to the attributes of the VMAP 
Standard Library. 

- VMAP.cxx: source code of the aforementioned constructors and destructors as well as 
definitions for the get and set functions for each struct referenced defined in VMAP.h. 

- VMAPH5Tools.h: defines H5 specific tools which are used by the Standard I/O Library. 
 

Basically, VMAP.h and VMAPFile.h need to be added to the main program’s include paths to allow for 
the usage of the VMAP library. Following file initiation and creation of the VMAP.h5 – storage file, the 
user may assign various general information to the version and system group. The version group 
stores information about the supported VMAP version as well as additional meta-information. The 
version is stored as a standard “Major-Minor-Path” integer type enumerator. The system group holds 
information about the used coordinate systems and unit systems as well as used element- and 
integration types. The two latter ones may be defined by the user himself, but it is beneficial to make 
use of the provided VMAPElementTypeFactory.cxx database which provides more than 30 predefined 
element types in 1D, 2D, and 3D and may be combined easily with the 
VMAPIntegrationTypeFactory.cxx database which allows to assign various integration rules to the 
elements stored inside the VMAP standard file. 
 
Afterwards, finite element mesh data can be stored in the geometry group which holds information 
about elements and points for each part. The points group is only depending on the coordinate system 
block, whereas the element group may be linked to further data such as material, element type, points, 
and coordinate system. The element types group is again dependent on integration types and points. 
 
Furthermore, state variables may be assigned to the VMAP file using the state variables group. This 
group holds information about the units being used to calculate these state variables, the coordinate 
system in which the information is being stored and the location of the storage, mainly: global, nodal, 
integration point, element, or element face. The already defined material group shall store information 

 

Fig.1: Illustration of the contribution of the various software partners (ISVs) in their preferred 
programming languages using SWIG and HDF5 [4]. 



about the material models being used for the calculation. Further dependencies are still missing and 
will be developed within future work of the VMAP standards community (SC). 
 
Fig. 2 shows the main dependencies of groups and sub-groups inside the defined VMAP standard. 

4 Implementation of the VMAP standard into Envyo® 

Within the VMAP project, Envyo has been used as a wrapper or translator tool between the VMAP 
standard and the LS-DYNA ascii input and result or dynain files. Therefore, read and write routines 
had to be adapted in a way that the Envyo internal data structure could be filled with VMAP data and 
vice versa. Since both VMAP and Envyo are written in C++, a direct integration of the VMAP standard 
I/O library was possible without going through the SWIG interface language.  
 
As known from the standard mapping options, the main ENVYO – command is used to activate the 
feature which transfers LS-DYNA dynain-files into a VMAP.h5 file. Tab. 2 shows possible input 
commands which help to translate the LS-DYNA native ascii input. Thereby, the user may select which 
parts of the geometry should be transferred, needs to assign the unit system which has been used for 
the calculation and may activate or deactivate the transfer of various data such as tensorial stress and 
strain data, history variables, which will be stored inside the VARIABLES group, effective plastic strain 
(EPS), and fiber orientation tensor data for short fiber reinforced plastic materials and fiber orientation 
vectorial data for continuous fiber reinforced plastic materials. Furthermore, data can be reduced by 
the user by defining specific Part-IDs which shall be included in the VMAP.h5 file. Since current 
implementations do not support the direct reading of element type information provided in the 
*SECTION cards in LS-DYNA input files, the user should also provide element type information 

following the source PID which should be read. In the provided example below, this is SH13 – which is 
an LS-DYNA native plain strain element. The UndeformedSourceFile equals to the input deck 

 

Fig.2: Dependencies of VMAP groups, sub-groups and data sets as defined in the VMAP 
standard I/O library [5]. 



being used to generate the dynain which is in this case the SourceFile, since it is read into the 

VMAP.h5 file. 
To generate a LS-DYNA ascii file, the main mapping command becomes VMAP2DYNA, and the 

SourceFile will be a VMAP.h5 file. Additional file format information may be provided using 

SourceFileFormat=VMAP, and result data is written to the *.key file referred to in the 

MappingResult command. Otherwise, the user has the same options to reduce data by assigning 

specific Part IDs for the output to the LS-DYNA ascii file as well as to select the data which should be 
translated from VMAP into LS-DYNA format. 
 
A comparison between the resulting VMAP.h5 file and the dynain input file is provided in fig. 3. Color-
coded frames shall help to understand the relationship between what is written to the VMAP.h5 file 
(left) and how these data are represented in the dynain result file. Information related to nodes and 
elements from *NODE and *ELEMENT are stored inside the GEOMETRY group, listing everything 

related to Part ID 1 in subfolders. Inside ELEMENTS, MYELEMENTS is a dataset which holds 
identifiers (element-IDs), the referred element type and coordinate system (in this case, global), no 
information referring to materials or sections, but connectivity, which directly represent the nodal IDs 
defining the element. The nodes corresponding to the connectivity are listed inside the POINTS group, 
under MYIDENTIFIERS, with a corresponding list of nodal coordinates provided in 
MYCOORDINATES. Additional information such as thicknesses stored at nodal points or angles 
referring to the element coordinate system (e.g. *ELEMENT_SHELL_BETA) would be stored inside the 

VARIABLES group. In this example, the VARIABLES group mainly holds information about the current 
stress state inside the STRESS_CAUCHY group and the plastic strain inside 
STRAIN_PLASTIC_EQUIVALENT. Those are highlighted in light red (effective plastic strain) and 
green (stress tensor variables). Information such as the used integration rule, which in this case is a 
plane strain shell element with four in-plane integration points is stored inside the SYSTEM block in 
the ELEMENTYPES and INTEGRATIONTYPES datasets. The five history variables written to the 
dynain file would be stored inside the VARIABLES block as well. The nodal displacement is calculated 
internally by Envyo from the provided UndeformedSourceFile and the dynain file. 

Table 2: Envyo input command for reading a LS-DYNA result file into a VMAP.h5 file. 

$#---------------------------------------- 

$# Main mapping definition 

$#---------------------------------------- 

ENVYO=DYNA2VMAP 

$#---------------------------------------- 

$# In- and output meshes 

$#---------------------------------------- 

UndeformedSourceFile=UndeformedGeometry.k 

SourceFile=dynain 

SourceUnitSystem=lb-in-s 

MappingResult=VMAP.h5 

$#---------------------------------------- 

$# Source PIDs 

$#---------------------------------------- 

NumSourcePIDs=1 

SourcePID#1=1,SH13 

$#---------------------------------------- 

$# Mapping options 

$#---------------------------------------- 

Translate_Stress=YES 

Translate_Strain=NO 

Translate_HISV=NO 

Translate_EPS=YES 

Translate_FiberData=NO 

 
 
 



 

5 VMAP application examples 

As stated above, Envyo is currently used as a translator or wrapper between VMAP and LS-DYNA 
format specifications and vice-versa. Two examples shall demonstrate the realized capabilities, a 
metal forming test case and a short fiber reinforced plastics test case. These two and further test 
cases are available for those interested in VMAP through the project’s website [1]. 
 

5.1 Metal forming test case 

The metal forming test case is used to demonstrate the interoperability capabilities of the defined 
VMAP standard, using both, Abaqus and LS-DYNA result data from a forming simulation step, 
transforming each result file into the VMAP format and back into the native solver formats to use the 
generated data as input for a subsequent spring-back analysis. As shown in fig. 4, the differences in 
the results are neglectable. In the provided example, no mapping is performed, but the results are 
exchanged between the different solvers, allowing to evaluate the capability to transform data through 
VMAP without losing accuracy. As reference, the two-step simulation chain using LS-DYNA for both 
the forming and the spring-back analysis is chosen. Thereby, the difference in the vertical 
displacement of the upper left node of the geometry is chosen for evaluation purposes.  When running 
the subsequent spring-back analysis with Abaqus, a difference of about 1.55% compared to the pure 
LS-DYNA modeling approach is being observed. Running both simulations using Abaqus, results are 
comparable to the pure LS-DYNA modeling approach, with a minor difference of 0.03% which can be 
due to numerical differences within the two solvers. Performing the initial simulation with Abaqus and 
the subsequent simulation with LS-DYNA leads to an offset of 1.89%. The graph displayed in fig. 4 
shows a small offset between the LS-DYNA and the Abaqus spring-back simulation. This is due to the 
consideration of material history variables in the LS-DYNA modeling approach whereas due to the 
solver change from LS-DYNA to Abaqus, history variables are neglected. Visual inspections of the von 
Mises stresses after the forming simulation and the effective plastic strains after the spring-back 
simulation for both solvers used emphasize that there is no loss of accuracy when transferring data 
through the VMAP standard between different solvers which is crucial for acceptance of the new 
format within the Computational Aided Engineering (CAE) community. 

 

Fig.3: Illustration of relevant data from a dynain file (r) being stored in a VMAP.h5 (l) file using the 
above provided translation commands (tab. 2) [8].  



 

5.2 Short fiber reinforced plastics test case  

The second test case illustrated here is related to short fiber reinforced plastics. In the provided 
example, results from Cadmould provided in a VMAP.h5 format have been interpreted by Envyo and 
written to a dynain file which supports orientation initialization for the commonly used LS-DYNA 
material model *MAT_ANISOTROPIC_ELASTIC_PLASTIC (*MAT_157) [9]. Fiber orientation in this 

case is read from the ORIENTATION_FIBRE group. This test case is interesting because it 
demonstrates the advantage of a standardized CAE result output format for both, software developers 
and users. Current implementations of Envyo were not able to read and write native Cadmould result 
data since they are commonly provided in a binary output file which needs to be investigated 
thoroughly to be interpreted correctly. A standardized result file format such as VMAP significantly 
simplifies that process. 
 
A visual inspection of the results provided in fig. 5 show the accuracy of the transferred Cadmould 
data to LS-DYNA. The distribution to the right and left of the specimen is strongly influenced by the 
position of the injection gauges, so a spread of the fibers into the various directions is clearly visible. A 
little further away from the injection gauges, fiber orientations perpendicular the direction of flow are 
visible and are caused by the so-called skin-core effect. At the center of the specimen, a weld-line 
becomes clearly visible due to the meeting of the two flow-fronts. These results are expected from 
such a geometry and injection gauge position, and therefore the interoperability through the VMAP 
standard has been proven for short fiber reinforced plastic materials.  
 
For visualization purposes, a single step analysis has been performed with LS-DYNA and the history 
variables stored in the d3plot file have been used to generate the vector plot using the Post → Vector 
→ Hist. Var. cosine functionality. Note that the orientation histories in this case are stored in LS-DYNA 
with reference to the element coordinate system.     

 

Fig.4: Illustration of the metal forming testcase, transforming LS-DYNA and Abaqus forming 
results into the VMAP format through Envyo (l) and performing a spring-back analysis after 
retrieving Abaqus and LS-DYNA native file formats from that file. Visual comparison of the 
v. Mises stress after the forming simulation (u.m.) and of the eff. plastic strain after the 
spring-back analysis (u.r.). The graph at bottom, middle, shows the resulting displacement 
of the top-left node in the spring-back simulation run with both, Abaqus and LS-DYNA over 
time – and the tables at the bottom, right, show the offset in displacement in percent, using 
a two-step approach with LS-DYNA used for both simulation steps as reference [8]. 



 

6 Conclusion and Outlook 

Within the VMAP project, a standardized result data storage format has been defined, based on a 
HDF5 binary data container. The high number of software vendors within the project consortium 
ensured a huge degree of acceptance within the community and knowledge transfer right from the 
start of the project. Therefore, the resulting standard is vendor-neutral, so that everybody may benefit 
through its usage. As has been shown in this paper, the VMAP standard I/O library developed during 
the project run-time is easy to use and implement into other software codes as well, even if other 
programming languages besides C++ are being preferred by the developers. Furthermore, the 
developed standard can be adjusted to the users’ needs. The standard’s specifications have been well 
defined and the implementation guidelines are easy to follow and available to public through the 
VMAP website [1]. 
 
Two test cases have been chosen to demonstrate the data transfer between different solvers through 
the VMAP standard without losing any accuracy or information. Currently, Envyo may be used by LS-
DYNA users to read and write VMAP data. Future developments will allow for a direct mapping 
between VMAP file formats, so that Envyo will be an interesting mapping tool for all CAE engineers, 
regardless of the finite element solver they are using. 
 
Following the VMAP project, the newly created VMAP standards community which is also supported 
by DYNAmore and most of the project members will take care of further developments of the VMAP 
standard and enhance the current I/O library based on results gained in follow-up projects. A 
preliminary focus might be on the enhancement of the material data and meta-information storage 
allowing the transfer of these information between the different solvers. Compared to the storage of 
geometry and mesh information for finite element analysis, this task is much more sophisticated since 
it is not only defined by clear mathematical descriptions, but other physically motivated assumptions 
as well which might be referred to by the different CAE tools with different terms and wording. Another 
interesting topic which should be dealt with in the future is the storage of data gained in other 
simulation disciplines, such as Computational Fluid Dynamics (CFD) or multi-physics simulations. In 
addition to that, first steps towards the integration of data gained through material testing shall be 
made so that basically all data generated and relevant during a component’s lifetime could be stored 
within one data storage container. 
   
 

 

Fig.5: Fiber orientation visualization transferred from Cadmould to LS-DYNA *MAT_157 using the 

VMAP standard [8].  
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