x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

From Time Delayed MRI to Patient-specific computational modeling of scar-related ventricular Tachycardia

Sudden cardiac death commonly occurs due to heart rhythm disorders called arrhythmia. Although recognized as the most efficient treatment options, Cardioverter Defibrillator implantation and tissue ablation are still not used to their full potential. Recently, advances in computational modeling and the increasing use of imaging tools have proven that patients’ digital twins can play a role in addressing these limitations. This paper presents such an approach using the industrial software ADAS-3D and LS-DYNA. The workflow starts from Late Gadolinium Enhanced-Magnetic Resonance Imaging (LGE-MRI) data from a patient with structural heart disease. The left ventricle and fibrotic substrate were analyzed using ADAS-3D software, which enables to distinguish between tissue that is healthy, scarred, and intermediate, and to extract topological information. This segmentation and tissue classification are used to build, using LS-DYNA, a detailed electrophysiology model containing the relevant features for simulating arrythmia. Using LS-DYNA, this model is then used to simulate a normal heartbeat and a clinical pacing protocol for inducing arrhythmia.