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1 Abstract 

This paper presents an artificial neural network (NN) modeling approach for representing mechanical 
fasteners in large-scale finite element crash simulations for explicit analysis using LS-DYNA version 
R9.3.1. The NN-model is established to describe the local force-deformation response of point-
connectors in automotive applications like self-piercing-rivets and flow-drill-screws. The behaviour from 
initial loading until failure or unloading is covered. Various architectures and complexities of feedforward 
NNs were evaluated and trained based on synthetic experiments generated from the constraint model 
proposed by Hanssen et al. [1]. The constraint model is available as *CONSTRAINED_SPR2 but was 

used in form of a cohesive element (8-noded, 4-point cohesive element with offsets for use with shells). 
 
The NN consists of three hidden layers each having 100 nodes. Weights and bias where trained using 
the Python/Keras package on the basis of synthetic stretch paths calculated by the constraint model. 
The NN is represented by a sequence of matrix multiplication inside a 
*MAT_USER_DEFINED_MATERIAL_MODELS where the joints force-components and damage are 

computed each time step. 
 
This forms a proof of concept for implementing such a machine learning modeling technique not based 
on physics-motivated equations. Both the impact of network complexity and training data diversity was 
investigated. The numerical results are compared to physical tests and the *CONSTRAINED_SPR2-

model for five different joint configurations including self-piercing rivets and flow-drill screws. 
Experimental data was obtained by Sønstabø et. al [2, 3, 4, 5]. All joint configurations show variation in 
their loading and failure behaviour which gives a wide selection for validating a NN-design that fits all 
applications. It can be shown that a rather basic machine learning technique like a feedforward NN is 
able to reproduce path-dependent force-deformation relation for the application in the explicit LS-DYNA 
solver. 

2 Introduction 

Structural joining of parts made from different materials requires appropriate techniques and fastener 
types. The mechanical behaviour of a joint in terms of stiffness, ductility and failure is unique for different 
material combinations and part geometries. Modelling the failure behaviour of large joined structures 
requires the model for each individual joint to capture complex failure modes and sequences. There 
exist macroscopic models for representing a joint in large-scale analysis using shell meshes. 
Nevertheless, these models are usually designed for a specific joint type and even with a larger set of 
parameters and an optimal fit, the shape of a force-displacement function is pre-defined. To find a model, 
which would fit multiple joint types, numerical techniques like NNs could be applied to gain the needed 
flexibility and degree of freedom. 
 
While a phenomenological model only needs a few physical tests to be fitted, the creation of a database 
for a NN based model is more tedious since the joint must be challenged in various loading and failure 
modes. Detailed FEM models of a joint could be used to generate a large dataset of loading-scenarios 
and could, with the help of a NN, be translated into large scale models. That approach would allow a 
more flexible joint model which would almost copy the force-displacement behavior of a joint without 
deviation due to the unsharpness of a phenomenological model. Also, the high order of a NN function 
would give the flexibility to model various joint behaviours if there can be enough loading-scenarios 
obtained to fit the problem. 
 
As a proof of concept for using a NN model inside an explicit FE-solver, various NN designs were 
evaluated and a reasonable one was implemented as a user-subroutine in LS-DYNA. The training data 
for the NN model was generated synthetically with the constraint model proposed by Hanssen et. al [1].  



13th European LS-DYNA Conference 2021, Ulm, Germany 
 

 

 
© 2021 Copyright by DYNAmore GmbH 

3 Methodology 

3.1 Constraint model introduction 

For large scale analysis, the joined sheets are represented by master and slave nodes. Those nodes 
are tied to a cohesive element, sandwiched between both sheet meshes as seen in Fig.1:. The 
constraint model proposed by Hanssen et. al. [1] computes the joint force from the stretch of the 
cohesive element, decomposed in a normal and tangential component. The joint force is computed as 
normal and tangential component and is sent back to the cohesive element as tractions. A damage 
variable is calculated as function of loading angle and element stretch. The governing equations can 
also be found in *CONSTRAINED_SPR2, which is the LS-DYNA implementation of the model proposed 

by Hanssen.  

 

Fig.1:  Large scale mesh with cluster of four cohesive elements representing joint 

3.2 Neural network modelling 

The joint model will be represented by a feedforward NN. It takes four input variables, which are the 
normal and tangential cohesive element stretch 𝛿𝑛, 𝛿𝑡 and a respective history measure of the stretches 

 𝛿𝑛̅, 𝛿𝑡̅. The NN predicts both normal and tangential tractions 𝑓𝑛, 𝑓𝑡 as well as a damage variable 𝜂. The 
history measures of both stretch components are realised as running mean and are needed to increase 
the NNs dimensionality to be able to model path dependent behaviour as seen during loading/unloading. 
The NN architecture is displayed in Fig.2:. The number of nodes in the input and output layer is fixed 
given by the present problem. However, the number of hidden layers and their hidden nodes will be 
changed and the effect investigated. There will be no more than four hidden layers and not more than 
500 nodes per hidden layer.  

 

Fig.2: Fully connected feedforward NN; four input variables (stretches, stretch histories) and three 
output variables (forces/tractions, damage) 
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All hidden layers are activated with the LeakyReLU (Leaky rectified linear unit) function whereas the 
output layer applies the ReLU function to give strictly positive results. The joint model only calculates 
tractions for positive stretches while compression of the joint area is constrained by the sheet contact 
formulation. The Nadam (Nesterov-accelerated Adaptive Moment Estimation) gradient method was 
used for training with the minimization goal of the mean squared error (MSE) function. Network training 
was performed with Python/Keras and the optimized weight and bias values were saved for later 
implementation in the user-subroutine. The network was trained on scaled input and target values to 
have similar magnitude of gradients during optimization not to exclude an output variable from training. 
 
Besides the NN architecture, the quality and amount of training data passed to the network is vital to 
achieve a reasonable problem fit. Various sequences of stretch paths and their histories were created 
and the corresponding joint force- and damage-response was calculated by the model proposed by 
Hanssen. The training scenarios consisted of proportional loading (loading a joint under constant angle) 
until failure, partial loading and following unloading as well as loading with a change of loading angle. A 
set with more complex loading sequences was kept aside from training for later NN validation.  
 

3.3 NN training results 

To find a reliable NN architecture, which would replicate the joint behaviour, a full factorial design with 
different combination of hidden layer and hidden node number was executed. Each designs 
performance is shown with the final achieved MSE for training and validation in Fig.3:. 
 

 
 

Fig.3: Final training (left) and validation (right) MSE: mean, lowest and highest achieved value for five 
randomly initialised trainings 

The trained proportional loading predictions for a selection of different complex NN designs are shown 
in Fig.4:. The contour plot shows different levels [0.7, 0.8, 0.9, 0.95, 1.0=failure] of joint damage and the 
achieved final MSE for the whole training set. From Fig.3: and Fig.4: it can be seen, that a design with 
three hidden layers each containing 100 nodes, gives a good training error and performs well under 
proportional loading. That design was kept constant for the following simulations and user-subroutine 
implementation. A NN of this size contains 21.003 trainable parameters (weights + bias), which need to 
be trained and imported to the subroutine. 
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Fig.4: Contour plots with different levels of damage: 100 nodes and one to four hidden layers (left), 
three hidden layers and 5, 20, 70, 100 nodes (right) 

 

4 Simulation and experimental comparison 

Both the *CONSTRAINED_SPR2-model (realised as cohesive element) and it’s NN representation were 

challenged in single-unit joint tests and a component test. The single-unit tests consist of two 40 by 120 
mm rectangular shaped sheets, overlapped as cross and joined in the center (crosstest). The 
component test is made from a U-shaped channel covered with a flat plat and joined with total 14 flow- 
drill-screws along the seam. The resulting crashbox structure was loaded axially. The plates were 
modeled by a shell mesh using Belytshko-Tsay elements with reduced integration. They had a 
quadrilateral shape and an approximate size of 2 mm. Friction between plates was modeled by surface-
to-surface contact formulation and a static friction coefficient of 0.2.  
 
The base material of the sheets was aluminium AA6016 in T4 condition. An isotropic plasticity model 
and the Hershey-Hosford yield criterion with Voce-hardening was used, applied by the *MAT_258 

material model proposed by Costas et al. [6]. Both material and joint model parameters were adopted 
from Sønstabø et. al. [2]. 
 

 

Fig.5: Crosstest for single unit test (left) and crashbox with joint numbering (right) 
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The results from the crosstest simulation are shown in Fig.6:. It can be seen, that both simulations with 
cohesive elements are in good coincidence. The NN is able to copy the model proposed by Hanssen. 
There is a deviation in force for the mixed mode test with delayed failure by 0.5 mm. The 
*CONSTRAINED_SPR2-model coincides with the other two shear simulations but deviates in the mixed 

mode and in the tensile mode. Global force-displacement results from the component simulation are 
shown in Fig.7: where the NN model shows almost no deviation from the *CONSTRAINED_SPR2-model. 

The component deformed and failed in a similar way. 
 

 

Fig.6: Force-displacement response from crosstest under tensile, mixed and shear loading; simulation 
with *CONSTRAINED_SPR2, SPR2 model as cohesive element and NN model as cohesive 

element 

 

 

Fig.7: Global force-displacement response component simulation 
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The global response from the NN model was similar to the *CONSTRAINED_SPR2-model and in addition 

is the local response from the cohesive elements shown in Fig.8:. Complex and non-proportional loading 
can be seen here. The NN model overall replicates the model proposed by Hanssen and captures 
unloading where the traction component is reduced while the damage stays constant. There can be a 
slight deviation in traction level seen when the joint is about to reach failure. 
 

 

Fig.8: Local response cohesive element 1-7; normal traction component over damage measure; 
failure/deletion of element 2 and 5 

 

5 Conclusion 

A phenomenological model for joints represented by *CONSTRAINED_SPR2 was replaced by a 

feedforward NN and successfully applied in a user subroutine to run in the explicit LS-DYNA solver. The 
constraint model was used as training basis for the NN and both were compared in simulations. The 
global force-displacements results were compared to physical tests and locally in the cohesive elements 
between both models. Following conclusions are made: 

• A common feedforward NN architecture is found which replicates the *CONSTRAINED_SPR2 

behaviour, which serves as proof of concept for application in an explicit FE routine 

• The NN works purely by matrix multiplication using the Intel Math Kernel Library and can take 
the input variables in vectorized form. 

• It efficiently computes force and damage components each time step without oscillations or 
numeric instabilities 

• The NN was able to capture unloading and the point of joint failure, so that the local behavior 
matched the model proposed by Hanssen 
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