x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

SDM

Analysis of LS-DYNA MOR Approaches for Application in Crash Analysis and Integration in SDM Workflows

Numerical simulations are often characterized by long computational times, especially as the size of the model grows larger. In many cases, this necessitates the use of a high-performance computer in order to speed up the simulation and obtain results faster. Nevertheless, computational times can still be large, such as in the automotive and aerospace industries. The automotive industry is highly dependent on numerical modelling. Companies perform numerical simulations for crash analysis in the preliminary phases of design, because it eliminates the need to perform expensive physical crash tests of prototypes. Optimization, another time-consuming process, is also often performed during the different stages of a project and is only possible using virtual testing. However, optimization adds to the scale of computational time needed in the automotive industry for virtual product development. The longer it takes to perform such numerical processes, the longer the time-to-market of a certain vehicle model and eventually, the higher the cost.

SMILE – Alternative Input Language for LS-DYNA (and Other Solvers)

To ensure today’s development cycles for products and components, the main part of the development process has to be supported by numerical simulations. For complex parts, many simulation disciplines have to be considered to meet all the requirements. This results in a usage of different simulation tools with different input file languages. Moreover, a typical simulation engineer has to be an expert for numerical simulation (in most cases for a specific solver), and also an experienced engineer (for a specific development discipline).