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1 Introduction 

Heart disease is among the leading causes of death in the Western world; hence, a deeper 
understanding of cardiac functioning will provide important insights for engineers and clinicians in 
treating cardiac pathologies. However, the heart also offers a significant set of unique challenges due 
to its extraordinary complexity. In this respect, some recent efforts have been made to be able to model 
the multiphysics of the heart using LS-DYNA. 
 
The model starts with electrophysiology (EP) which simulates the propagation of the cell transmembrane 
potential in the heart. This electrical potential triggers the onset of cardiac muscle contraction, which 
then results in the pumping of the blood to the various organs in the body. The EP/mechanical model 
can be coupled with a Fluid Structure Interaction (FSI) model to study the clinically relevant blood flow 
parameters as well as valves or cardiac devices. This paper concentrates on the EP part of the model. 
 
Different propagation models, called “mono-domain” or “bi-domain”, which couple the diffusion of the 
potential along the walls of the heart with ionic equations describing the exchanges between the inner 
and the outer parts of the cells have been implemented.  
Other features of the EP solver will also be presented such as the coupling of the mono/bi domain 
models with a Purkinje Network, the automatic generation of fiber orientations, the computation of EKG, 
and the coupling of the EP with the mechanics and FSI. 
 

2 Presentation of the model 

 
The wall of the heart has three layers: epicardium, myocardium and endocardium. The endocardium 
and epicardium are thin layers consisting primarily of collagen and elastic tissue. In the middle layer, the 
myocardium, the cells that constitute the muscle show electrical excitability. These specialized cells, 
called myocytes, are organized into parallel cardiac fibers giving the muscle the striated appearance. 
The fibers form sheets which are connected by a collagenous network [1]. 
A cardiac cell (myocyte) is typically 10 to 20 μm in diameter and 80 to 125 μm in length. The cell 
membrane acts as an electrical insulator and contains ion channels which transport electrical current by 
diffusion. The potential difference across the membrane is called the transmembrane potential. Initially, 
a cardiac cell is at rest, with a potential difference across the membrane. The potential inside the cell is 
negative compared to the external, with a potential difference around 80mV. If the membrane potential 
rises to a certain threshold value (close to 40 mV) a rapid process occurs, during which different ions, 
mainly Na+, K+, and Ca2+, are exchanged between the inner and the outer part of the cell, creating a fast 
depolarization, an early repolarization, a plateau and a final repolarization. The complete cycle of 
depolarization and repolarization lasts around 300 ms and is called “action potential”. It is shown in 
Figure (1). This action potential diffuses from cell to cell through a network of gap junctions, creating a 
wave of depolarization and repolarization through the myocardium [1]. 
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Fig.1: A typical action potential of a ventricular myocyte and the underlying ion currents. The resting 
membrane potential is approximately ~80 mV (phase 4). The rapid depolarization is primarily 
due to the voltage gated Na+ current (phase 0), which results in a relatively sharp peak (phase 
1) and transitions into the plateau (phase 2) until repolarization (phase 3). Also indicated are the 
refractory period and timing of the ventricular contraction. Modified from Tortora GJ, Grabowski 
SR. Principles of Anatomy and Physiology, ninth edition. New York: John Wiley & Sons, Inc., 
2000 

 

2.1 The bidomain model 

 
Since describing the whole heart, or even part of it like a ventricle, at the cell level would be 
computationally too expensive, continuous approximations are made, where the inner part of the cells 
is treated as one continuum “domain” with an inner potential 𝜙𝑖(�⃗�, 𝑡), and the outer part as another 
domain with an external potential 𝜙𝑒(�⃗�, 𝑡). Each domain is characterized by a conductivity tensor, called 

respectively 𝜎𝑖 and 𝜎𝑒. These tensors are usually highly non-isotropic, with factors that can be as high 
as 5 to 10 between the conductivity along the fibers and the one across the fibers. Therefore, it is very 
important to correctly model the fiber orientation, which can be consumed from an imaging technique 
called the diffusion tensor MRI. A transmembrane current with surface density 𝐼𝑚 flows between the two 
domains hence the so called “bi-domain” equations [2]: 
∇ ∙ (𝜎𝑖∇𝜙𝑖) = 𝛽𝐼𝑚                            (1) 

∇ ∙ (𝜎𝑒∇𝜙𝑒) = −𝛽𝐼𝑚               (2) 
where 𝛽 is the membrane surface to volume ratio. 

This transmembrane current density 𝐼𝑚 consists of a capacitive part, an ionic part generated by the cell 

membrane 𝐼𝑖𝑜𝑛, and an imposed stimulation current density 𝐼𝑠𝑡𝑖𝑚: 

𝐼𝑚 = 𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
+ 𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚               (3) 

where 𝐶𝑚 is the membrane capacity per unit area, and we introduced the transmembrane potential: 
𝑉𝑚 = 𝜙𝑖 − 𝜙𝑒                                                                                                                           (4) 
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Fig.2: Illustration of the bidomain method (adapted from “Multiscale forward electromagnetic model of 
uterine contractions during pregnancy”, La Rosa et al. BMC Medical Physics 2012, 12:4.). 

 
Using (3) and (4), we can rewrite equations (1) and (2) in terms of 𝑉𝑚 and 𝜙𝑒 𝑎𝑠: 

𝛽𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
+ 𝛽𝐼𝑖𝑜𝑛(𝑉𝑚 , 𝑢) − ∇ ∙ (𝜎𝑖∇𝑉𝑚) − ∇ ∙ (𝜎𝑖∇𝜙𝑒) = 𝛽𝐼𝑠𝑡𝑖𝑚(�⃗�, 𝑡)           (5) 

∇ ∙ (𝜎𝑖∇𝑉𝑚) + ∇ ∙ ((𝜎𝑖 + 𝜎𝑒)∇𝜙𝑒) = 0                                                  (6) 

In equation (5), we wrote 𝐼𝑖𝑜𝑛(𝑉𝑚, 𝑢), to indicate that the ionic current density depends not only on the 
transmembrane potential 𝑉𝑚, but also on an extra set of variables that we represent by 𝑢. The number 
of such variables and their time evolution depend on the cell model chosen, which we write, in a general 
way:  
𝜕𝑢

𝜕𝑡
= 𝑓(𝑢, 𝑉𝑚)                 (7) 

These cell or „ionic“ models locally describe the exchange of ions through the cell membrane, as 
schematically shown in Figure 1. More details about the Ionic models currently existing in LS-DYNA will 
be given in section (3).  
 
Projecting equations (5) and (6) onto the FEM basis functions, we get: 

 𝛽𝐶𝑚𝑀
𝜕𝑉𝑚

𝜕𝑡
+ 𝛽𝐼𝑖𝑜𝑛 − 𝑆𝑖𝑉𝑚 − 𝑆𝑖𝜙𝑒 = 𝛽𝐼𝑠𝑡𝑖𝑚                      (8) 

𝑆𝑖𝑉𝑚 − 𝑆𝑖𝑒Ф𝑒 = 0                 (9) 
where 

𝑀(𝑖, 𝑗) = ∫ 𝜑𝑖𝜑𝑗𝛺
𝑑𝛺                (10) 

Is the mass matrix, and 

𝑆𝑖(𝑖, 𝑗) = ∫ 𝜎𝑖∇𝜑𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗  ∇𝜑𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝛺

 𝑑𝛺              (11) 

and 

𝑆𝑖𝑒(𝑖, 𝑗) = ∫ (𝜎𝑖 + 𝜎𝑒)∇𝜑𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗  ∇𝜑𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝛺

 𝑑𝛺                (12) 

are diffusion stiffness matrices corresponding to different conductivities. 
In order to solve the coupled diffusion equations (8)-(9) with the ionic one (7), we use a so called “Spiteri-
Ziaratgahi” operator splitting [3] where the advance from time t to time t+1 reads: 
𝑢(𝑡 + 1) = 𝑢(𝑡) + 𝑑𝑡 𝑓(𝑢(𝑡), 𝑉𝑚(𝑡), 𝑡)            (13) 

[
𝛽𝐶𝑚

𝑑𝑡
𝑀 + 𝑆𝑖 𝑆𝑖

𝑆𝑖 𝑆𝑖𝑒

] ∙ [
𝑉𝑚(𝑡 + 1)

𝜙𝑒(𝑡 + 1)
] = [

𝛽𝐶𝑚

𝑑𝑡
𝑀𝑉𝑚(𝑡) − 𝛽𝑀𝐼𝑖𝑜𝑛(𝑢(𝑡 + 1), 𝑉𝑚(𝑡), 𝑡) + 𝛽𝑀𝐼𝑠𝑡𝑖𝑚

0
]      (14) 

 

2.2 The monodomain model 

The monodomain model makes the extra hypothesis that the inner and outer conductivity tensors are 
proportional: 𝜎𝑒 = 𝜆𝜎𝑖. We introduce a mean conductivity [2]: 

𝜎 =
𝜎𝑖𝜎𝑒

𝜎𝑖+𝜎𝑒
               (15) 

or 
𝜎𝑖 = (1 + 𝜆)𝜎                            (16) 

𝜎𝑒 =
1+𝜆

𝜆
𝜎                           (17) 
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Equation (6) gives: 

∇ ∙ (𝜎𝑖∇𝜙𝑒) = −
𝜆

1+𝜆
∇ ∙ (𝜎𝑖∇𝑉𝑚)                    (18) 

which gives, when using it in (5), an equation on 𝑉𝑚 only: 

𝛽𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
+ 𝛽𝐼𝑖𝑜𝑛(𝑉𝑚 , 𝑢) − ∇ ∙ (𝜎∇𝑉𝑚) = 𝛽𝐼𝑠𝑡𝑖𝑚(�⃗�, 𝑡)           (19) 

This is the monodomain equation. 
When projecting equation (19) onto the FEM basis functions, we get: 

𝛽𝐶𝑚𝑀
𝜕𝑉

𝜕𝑡
+ 𝛽𝐼𝑖𝑜𝑛 − SV = 𝛽𝐼𝑠𝑡𝑖𝑚             (20) 

with 

𝑆(𝑖, 𝑗) = ∫ 𝜎∇𝜑𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗  ∇𝜑𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝛺

 𝑑𝛺              (21) 

And 𝑀 is defined by (10). 
 

2.3 The extended monodomain model 

The monodomain gives the transmembrane potential , but not the external potential nor the internal one. 
It is possible to rewrite equation (6) as [1]: 
 
∇ ∙ ((𝜎𝑖 + 𝜎𝑒)∇𝜙𝑒) = −∇ ∙ (𝜎𝑖∇𝑉𝑚)                                                                                                            (22) 
 
And solve this extra system to get the external potential, from which we can get the internal one using 
equation (4). It still is less expensive to solve the 2 smaller systems (19) and (22) than to solve the larger 
bidomain model (5)-(6) [4]. The user can decide about solving this extra system or not.  
 

2.4 Benchmarks of the ls-dyna EP models 

These models were first benchmarked against published results obtained from other EP research codes 
on a simple cuboid heart tissue model. More recently, we also performed benchmarks proposed by the 
FDA against analytical solutions. These benchmarks are presented in [5] and [6]. 
 

3 Cell Models 

Depending upon the question of interest, one can select from a wide class of ionic models, ranging from 
the FitzHugh-Nagumo model [7][8] with two variables or the Fenton-Karma model with 3 variables [9] to 
the ten Tusscher and Panfilov model [10] with 19 variables and the Tomek [11] one with 43 variables. 
 
The cell models are defined part-wise (except for the usermat one, which can depend on the nodes). 
 

3.1 Fitzhugh-Nagumo 

In the Fitzhugh-Nagumo model, the excitation is defined by a cubic polynomial along with one recovery 

variable, 𝑟 [7],[8]. The transmembrane current, 𝐼ion, is given by: 

𝐼ion = −𝐶𝑚

𝜕𝑉

𝜕𝑡
= −𝑐𝑉 (𝑉 − 𝛼)(𝑉 − 1) − 𝑟𝑉             (23) 

Here 𝑉 is the transmembrane potential, 𝐶𝑚 is the specific capacitance of the cell membrane, and 𝑐 and 

𝛼 are excitation constants. 
 
The recovery variable 𝑟 evolves according to: 

𝑑𝑟

𝑑𝑡
= (𝛾 +

𝑟𝜇1

𝜇2 + 𝑉
)(−𝑟 − 𝑐𝑉(𝑉 − 𝛽 − 1))        (24) 

where 𝛽, 𝛾, 𝜇1 and 𝜇2 are excitation constants. 
 

3.2 Fenton-Karma 

The Fenton-Karma model is a simplified ionic model with three membrane currents that approximates 
well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action 
potential (Beeler-Reuter and others). It was introduced in [9].  
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The total current flowing through the membrane is given by: 

𝐼ion = −𝐶𝑚

𝜕𝑉

𝜕𝑡
= −𝐽fi             (25) 

where 𝑉 is the transmembrane potential, 𝐶𝑚 is the specific capacitance of the cell membrane, and 𝐽fi is 
the fast inward current.  
 
The model depends on three state variables, 𝑢, 𝑣, and 𝑤, and three membrane currents, 𝐽fi, 𝐽so (slow 
outward current), and 𝐽si (slow inward current), through the following equations:  

𝑑𝑢

𝑑𝑡
= −𝐽fi − 𝐽so − 𝐽si             (26) 

𝑑𝑣

𝑑𝑡
=

Θ(𝑢𝑐 − 𝑢)(1 − 𝑣)

 𝜏𝑣𝑚

−
Θ(𝑢 − 𝑢𝑐)𝑣

 𝜏𝑣𝑝

             (27) 

𝑑𝑤

𝑑𝑡
=

Θ(𝑢𝑐 − 𝑢)(1 − 𝑤)

 𝜏𝑤𝑚

−
Θ(𝑢 − 𝑢𝑐)𝑤

 𝜏𝑤𝑝

             (28) 

𝐽fi = −
Θ(𝑢𝑐 − 𝑢)(1 − 𝑢)(𝑢 − 𝑢𝑐)

𝜏𝑑

             (29) 

𝐽so =
𝑢 Θ(𝑢𝑐 − 𝑢)

𝜏𝑜

+
𝑢 Θ(𝑢 − 𝑢𝑐)

𝜏𝑟

             (30) 

𝐽si = −
𝑤(1 + tanh[𝑘(𝑢 − 𝑢𝑐

𝑠𝑖])

2𝜏𝑠𝑖

             (31) 

In the above Θ is the Heaviside step function. 
 

3.3 Ten-Tusscher 

This is a model of the action potential of human ventricular cells that, while including a high level of 
electrophysiological detail, is computationally cost-effective enough to be applied in large-scale spatial 
simulations for the study of reentrant arrhythmias. This model is based on [10]. 
 

3.4 Tomek 

The Tomek model [11] is a human-based ventricular model for simulations of electrophysiology and 
excitation-contraction coupling, from ionic to whole-organ dynamics, including the electrocardiogram. It 
can be used under healthy conditions, but also with key disease conditions, and can include the effect 
of different drugs. 
 
 

3.5 User defined cell models using define functions 

A user can define his own cell model either through define functions or using usermat. When using 
define functions, different define functions are used to define the evolution of the state variables as a 
function of time, time step and the values of the other state variables. The model is composed of the 
transmembrane potential, 𝑉, along with 𝑛 state variables 𝑢1, 𝑢2, … 𝑢𝑛. Their temporal evolution is given 

either as: 
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𝑉(𝑡) = 𝑔(𝑡, 𝑑𝑡, 𝑉(𝑡 − 1), 𝑢1(𝑡 − 1), 𝑢2(𝑡 − 1), … , 𝑢𝑛(𝑡 − 1))

𝑢1(𝑡) = 𝑓1(𝑡, 𝑑𝑡, 𝑉(𝑡 − 1), 𝑢1(𝑡 − 1), 𝑢2(𝑡 − 1), … , 𝑢𝑛(𝑡 − 1))

𝑢2(𝑡) = 𝑓2(𝑡, 𝑑𝑡, 𝑉(𝑡 − 1), 𝑢1(𝑡 − 1), 𝑢2(𝑡 − 1), … , 𝑢𝑛(𝑡 − 1))

⋮
𝑢𝑛(𝑡) = 𝑓𝑛(𝑡, 𝑑𝑡, 𝑉(𝑡 − 1), 𝑢1(𝑡 − 1), 𝑢2(𝑡 − 1), … , 𝑢𝑛(𝑡 − 1))

 

 
Or as 
 

𝜕𝑉(𝑡)

𝜕𝑡
= 𝑔(𝑡, 𝑑𝑡, 𝑉(𝑡 − 1), 𝑢1(𝑡 − 1), 𝑢2(𝑡 − 1), … , 𝑢𝑛(𝑡 − 1)) 

𝜕𝑢1(𝑡)

𝜕𝑡
= 𝑓1(𝑡, 𝑑𝑡, 𝑉(𝑡 − 1), 𝑢1(𝑡 − 1), 𝑢2(𝑡 − 1), … , 𝑢𝑛(𝑡 − 1))

𝜕𝑢2(𝑡)

𝜕𝑡
= 𝑓2(𝑡, 𝑑𝑡, 𝑉(𝑡 − 1), 𝑢1(𝑡 − 1), 𝑢2(𝑡 − 1), … , 𝑢𝑛(𝑡 − 1))

⋮
𝜕𝑢𝑛(𝑡)

𝜕𝑡
= 𝑓𝑛(𝑡, 𝑑𝑡, 𝑉(𝑡 − 1), 𝑢1(𝑡 − 1), 𝑢2(𝑡 − 1), … , 𝑢𝑛(𝑡 − 1))

 

 
Where define functions are used to define 𝑔, 𝑓1,   𝑓𝑛, and other ones are used to define the initial values 
of 𝑉, 𝑢1,   𝑢𝑛 as a function of (x,y,z) and other parameters. 
 

3.6 User defined cell models using usermat 

The user can also define a cell with a usermat subroutine in dyn21em.f. In this subroutine, the user 
initialises the state variables and the constants of the model at the initial time step, and defines the 
advance of these variables by one time step at subsequent time steps.  
This allows to have more complex cell models than the define functions. It also offers the flexibility to 
have different cell models (with different number of state variables) at each node, or in different areas 
of the ventricles, atria, ... 
 

4 Purkinje Network 

The Purkinje network is a specialized conduction system within the heart that ensures the proper 
activation of the ventricles to produce effective contraction. During the ventricular contraction portion of 
the cardiac cycle, the Purkinje fibers carry the contraction impulse from both the left and right bundle 
branch to the myocardium of the ventricles. This causes the muscle tissue of the ventricles to contract 
and generate force to eject blood out of the heart, either to the pulmonary circulation from the right 
ventricle or to the systemic circulation from the left ventricle. The Purkinje network is thus an important 
part of the excitation system in the human heart, which is shown in figure 3. Yet, up to now, there is no 
in vivo imaging technique to accurately reconstruct its geometry and structure. Computational modeling 
of the Purkinje network is increasingly recognized as an alternative strategy to visualize, simulate, and 
understand the role of the Purkinje system.  
 

 
 

Fig.3: Cardiac conduction system showing the Purkinje fibers. 

https://en.wikipedia.org/wiki/Bundle_branch
https://en.wikipedia.org/wiki/Bundle_branch
https://en.wikipedia.org/wiki/Myocardium
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Pulmonary_circulation
https://en.wikipedia.org/wiki/Systemic_circulation
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We thus developed an automatic 3D fractal network generation on a non-smooth surface (here, the 
endocardial surface of the ventricle), which is coupled to the 3D volume mesh, in a similar way as 
described in [12]. This Purkinje network is composed of conducting beams, and the leaves of the 
network are connected to the nodes of the volume mesh of the ventricle, thus allowing a coupling of the 
EP waves between the Purkinje network and the ventricles. Figure 4 shows such a network on a simple 
by-chamber surface, as well as the EP wave propagation on a Purkinje network coupled with a ventricle.  
 

 

Fig.4: Example of 2 purkinje networks in a bi-chamber simulation (left) and propagation of the 
transmembrane potential (right) showing the fast propagation through the network and the 
slower diffusion through the tissue. 

 

5 Fiber Orientation 

 
An automatic generation of fiber orientations, which can be used in EP with orthotropic conductivity 
tensors 𝜎𝑖  and 𝜎𝑒, as well as in the mechanical model *MAT_295, can be done using the card 
*EM_EP_CREATEFIBERORIENTATION. It is based on [13]; where the user gives node or segment set 
to define the dirichlet constraints of the different Laplace system to solve in order to get the potentials 
and their gradients, as well as some define functions to set up α and β in each element, so that a local 
coordinate system can be defined. This is explained schematically in figure (5), and the corresponding 
result is shown on figure (6). 
 

 
 

Fig.5: Illustration (from [13]) of the construction of fiber orientations using the card 
*EM_EP_CREATEFIBERORIENTATION. 
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Fig.6: Fiber orientations on a bi-chamber example using *EM_EP_CREATEFIBERORIENTATION 

 

6 Computation of EKG 

 
From the transmembrane potential 𝑉𝑚 in the tissue, one can compute the external potential 𝜙𝑒 at 
different locations on the torso, even if the torso is not included in FEM the domain, using the integral 
[14]: 
 

𝛷𝑒(𝑥𝑒) = − ∫ ∇Φ ∙ ∇
1

||𝑥 − 𝑥𝑒||
𝑑𝑉

𝑏

 

 
The card *EM_EP_EKG allows to define a set of points 𝑥𝑒  where the external potential 𝛷𝑒 is computed 
at different time steps. Different combinations of these external potentials then allows to compute the 
EKG signals. 
 

 

Fig.7: Example of an EKG computations  

 

7 Coupling with mechanics and FSI 

 
The EP models give the local and temporal transmembrane potential as well as intracellular calcium ion 
concentration which provide the activation part of the heart muscle myofilament models, hence the input 
for the mechanical tissue models. An anisotropic hyperelastic constitutive model, including an active 
term, *MAT_295, was developed in order to couple the EP with the mechanical deformations. These 
deformations can furthermore be coupled with the hemodynamics using the fluid-structure interaction 
(FSI) capabilities of the ICFD module of LS-DYNA. Figure 8 shows an example of a coupled EP-
mechanics-FSI simulation.  
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Fig.8: Ventricular contraction showing the propagation of the EP wave, the contraction of the ventricle, 
and the blood flow through the valve 

 

8 Summary 

 
An EP solver was introduced in LS-DYNA. Both monodomain and bidomain methods have been 
developed, with different algorithms for each of them. An extended-monodomain model where the 
internal and external potentials can also be computed is available. The 3 models can be coupled 
together in the same simulation and a surrounding bath can also be added. 
The mono and bidomain model models can be coupled to different cell models, including FitzHugh-
Nagumo, Fenton-Karma, ten Tusscher and Panfilov, Tomek and user-defined ones. The mono and bi-
domain models can also be coupled with a Purkinje network which can be automatically generated on 
the endocardial surface of the ventricle. Fiber orientations, which are used by both the EP and 
mechanical models can also be automatically built.  
  
Our goal is to be able to simulate a full heart beat, so the EP solver can be coupled with an anisotropic 
hyperelastic constitutive model so that the EP wave can generate the deformation of the ventricles or 
atria which in turn can be coupled with the ICFD module to solve the hemodynamics part of the problem. 
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