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Abstract 

During plastic deformation of a metal, a part of the plastic work is stored in the material due to local 
distortion of the crystal lattice, while the remainder is dissipated as heat. The part of the plastic work 
dissipated as heat can be observed on a macroscopic scale through thermal measurements in high 
strain rate experiments. Typically, this fraction of plastic work converted into heat is assumed to be 
constant and around 90%. In this study, we have performed tension tests at a constant crosshead 
velocity of 0.6 mm/s on flat notched specimens from a DP600 steel material. Digital image correlation 
(DIC) was used to apply virtual extensometers spanning the length of the notched area. Furthermore, 
an infrared camera was used to measure the temperature increase over the same area as monitored 
by DIC, enabling correlation between temperature and displacement. These temperature-displacement 
curves were used as the target curves in thermomechanical simulations to obtain the Taylor-Quinney 
coefficient as a function of the equivalent plastic strain. It was found that the Taylor-Quinney coefficient 
exhibits quite large variations during the experiment, ranging from a minimum of about 0.5 in the 
beginning of the test, to about 0.95 at the end of test. 
 
 

1 Introduction 

During high-rate loading, the material undergoes extensive heating due to the plastic work dissipated 
under nearly adiabatic conditions. The plastic work consists of two parts – the amount dissipated as 
heat, and an amount stored as elastic energy due to the generation of dislocations. The fraction of plastic 
work dissipated as heat is frequently referred to as the Taylor-Quinney coefficient (𝛽). In the literature, 
the Taylor-Quinney coefficient is typically assumed to be constant and equal to 𝛽 = 0.9. In reality, 𝛽 is 
not a constant but varies with work hardening, strain rate, and temperature, because these parameters 
affect the rate at which dislocations are stored and annihilated. This was shown in the seminal paper by 
Taylor and Quinney [1], where they observed that the amount of latent heat decreased as a function of 
deformation for both annealed mild steel and decarburized mild steel. The variation of the Taylor-
Quinney coefficient under different loading conditions has been studied by several authors, see e.g. [2-
6]. 
 
In this study, we have performed experiments on notched tension specimens of a 1.0 mm thick DP600 
steel sheet material. The notched tension test was instrumented with a digital camera and an infrared 
camera for full-field measurements of the displacement and temperature fields, respectively, at the 
specimen surface. This enables a correlation between the temperature increment and the local 
deformation within the notch region of the specimen. The temperature versus displacement curves from 
these tests were then used to determine the variation of the Taylor-Quinney coefficient by an inverse 
modelling approach using thermomechanical finite element simulations in LS-DYNA together with a user 
subroutine to control the Taylor-Quinney coefficient. Finally, it is shown that the proposed experimental-
numerical approach to determine the evolution of the Taylor-Quinney coefficient gives an excellent 
agreement between the measured and the simulated temperature evolution in the notched specimen. 
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2 Experiments 

The experiments were conducted in an Instron 5982 (100 kN) universal testing machine. The notched 
tension (NT3) specimens (Figure 1) were loaded using a constant crosshead velocity of 0.6 mm/s. 
 

 

Fig.1: Dimensions of the notched tension (NT3) specimens with a thickness of 1.0 mm. All measures 
are in mm. 

A Basler ac4112-30um area scan camera with a 100 mm macro lens captured 5 frames per second 
(fps) of the surface of the specimen during loading, while a FLIR SC 7500 thermal camera operating at 
200 fps was used to capture the temperature increase on the opposite surface of the specimen, see 
Figure 2.  
 

 

 
(a) (b) 

Fig.2: (a) The maximum principal strain just before fracture together with the virtual extensometer, 
and (b) the temperature in degree Celsius on the opposite surface of the specimen just before 
failure. 

 
The time series from the two cameras were correlated after the tests, which enabled us to express the 
maximum temperature increase on the surface of the specimen as a function of the engineering strain, 
see Figure 3. 

L0 = 4.14 mm 
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(a) (b) 

Fig.3: (a) Force and (b) temperature increment versus engineering strain from the two test 
repetitions. 

 
The laser flash method [7] was used to establish the specific heat capacity (𝑐v) and thermal conductivity 

(𝑘) given in Table 1, while the remaining material parameters were taken from literature. 
 

Table 1: Material parameters for the DP600 sheet material. 

Density, 𝜌 
 
(kg/m3) 

Young’s 
modulus 𝐸  
(MPa) 

Poisson’s 
ratio, 𝜈 

Specific heat 
capacity, 𝑐v  

(J/(kg⋅K)) 

Thermal 
conductivity, 𝑘 

(W/(m2⋅K)) 

Thermal expansion 
coefficient, 𝛼T 
(K-1) 

7850.0 210,000 0.3 420 44.6 1.0⋅10-5 

 

3 Constitutive model 

We use a hypoelastic formulation of the constitutive model and an additive decomposition of the 

corotational rate-of-deformation tensor �̂� into elastic and plastic parts is thus assumed 

�̂� = �̂�e + �̂�p (1) 

The material is modelled as isotropic and linearly thermo-elastic according to Hooke’s law on rate form, 
viz. 

�̇̂� = 2𝜇dev(�̂�e) + 𝜅(tr(�̂�e) − 3𝛼T�̇�)𝟏 (2) 

where �̂� is the corotated Cauchy stress tensor, 𝜇 and 𝜅 are the shear and bulk moduli, 𝛼T and �̇� are the 
thermal expansion coefficient and the temperature rate, 𝟏 is the second order identity tensor, and dev(𝐗) 

and tr(𝐗) denote the deviatoric and spherical part of the tensor 𝐗, respectively. The yield function is 
given by 

𝑓 =  𝜎eq(�̂�) − (𝜎0 + 𝑅(𝑝))(1 − (𝑇∗)𝑚)  ≤ 0  (3) 

where 𝜎eq is the Hershey-Hosford [8,9] equivalent stress, viz. 

𝜎eq = [
1

2
(|𝜎1 − 𝜎2|𝑎 + |𝜎2 − 𝜎3|𝑎 + |𝜎3 − 𝜎1|𝑎)]

1
𝑎

(4) 

where 𝜎𝑖 are the principal stresses and 𝑎 is a positive integer, which we set to a value of 𝑎 = 6 in the 

numerical simulations. The homologous temperature 𝑇∗ is defined as 

𝑇∗ =
𝑇 − 𝑇0

𝑇m − 𝑇0

(5) 
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where 𝑇 is the temperature and 𝑇0 and 𝑇m are the initial and melting temperature, respectively. The initial 
yield stress at 𝑇 = 𝑇0 is defined by 𝜎0, whereas the parameter 𝑚 governs the temperature sensitivity of 
the material. The work hardening is defined by 

𝑅(𝑝) = ∑ 𝑄𝑖(1 − exp(−𝐶𝑖𝑝))

3

𝑖=1

  (6) 

where 𝑝 is the equivalent plastic strain, and 𝑄𝑖 and 𝐶𝑖 are hardening parameters. 
 

The corotated plastic rate-of-deformation tensor �̂�p is obtained from the associative flow rule  

�̂�p = �̇�
𝜕𝑓

𝜕�̂�
 (7) 

where the equivalent plastic strain rate �̇� is defined from the viscoplastic constitutive relation 

�̇� = {

0                                                                          if    𝑓 ≤ 0

�̇�0 [  (
𝜎eq

(𝜎0 + 𝑅(𝑝))(1 − (𝑇∗)𝑚)
)

1
𝐶

− 1 ]    if    𝑓 > 0
 (8) 

Here,  �̇�0 is a reference equivalent plastic strain rate and 𝐶 is a rate-sensitivity parameter. In the plastic 
domain, the equivalent stress is then given as 

𝜎eq = (𝜎0 + 𝑅(𝑝)) (1 +
𝑝

�̇�0

̇
)

𝐶

(1 − (𝑇∗)𝑚) (9) 

which is recognized as a modified Johnson-Cook equivalent stress [10]. The current temperature 𝑇 is 
obtained from the heat equation as 

𝜌𝑐v�̇� = 𝛽𝜎eq�̇� + 𝑘Δ𝑇 − 3𝜅𝛼T𝑇tr(�̂�e) (10) 

where Δ is the Laplacian operator. Note that external heat sources are excluded in the local energy 
balance to arrive at this expression. 
 
The parameters used in the constitutive model are given in Table 2. 
 

Table 2: Material parameters used in the constitutive model. 

Yielding and work hardening  Viscoplasticity  

𝜎0 𝑄1 𝐶1 𝑄2 𝐶2 𝑄3 𝐶3  𝐶 �̇�0  𝑚 

(MPa) (MPa) (-) (MPa) (-) (MPa) (-)  (-) (1/s) (-) 

346.77 184.76 163.651 269.23 9.733 302.1 0.515  0.005 0.001 1 

 

4 Numerical optimization of the Taylor-Quinney coefficient 

Using a user subroutine, the Taylor-Quinney coefficient was tabulated as a piecewise linear function of 
the equivalent plastic strain. The initial values of the coefficients governing the piecewise linear function 
were estimated by running a series of thermo-coupled FE simulations (Figure 4) with a constant Taylor-
Quinney coefficient. 

 

 

Fig.4: Finite element model of the NT3 specimen. 

 
As illustrated in Figure 5, the intersections between the experimental curves and the results from 
simulations defined the Taylor-Quinney coefficient as a function of longitudinal engineering strain.  
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(a) (b) 

Fig.5: (a) Illustration of how the initial guess for the optimization procedure is obtained and (b) the 
resulting Taylor-Quinney coefficient as a function of engineering strain. 

 
The longitudinal engineering strain, found from 𝐿0 in Figure 4, was then correlated with the equivalent 
plastic strain evaluated from the centermost element in the notch where the temperature was extracted, 
see Figure 4. This defined the initial input to LS-OPT, which was used to obtain the tabulated values of 
the Taylor-Quinney coefficient as a function of the equivalent plastic strain given in Figure 6. 
 
 

 

Fig.6: Optimized Taylor-Quinney coefficient as a function of equivalent plastic strain. Longitudinal 
engineering strain versus equivalent plastic strain is also shown. 

 
A comparison of temperature increment and force versus longitudinal engineering strain is given in 
Figures 7(a) and 7(b), respectively, for a numerical simulation using the optimized set of parameters for 
the Taylor-Quinney coefficient. As shown, we obtain an excellent agreement between the simulated and 
measured temperature increments. 
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(a) (b) 

Fig.7: (a) Comparison of temperature increment versus longitudinal engineering strain with the 
optimized Taylor-Quinney coefficients, and (b) force versus longitudinal engineering strain 
from experiment and simulation. 

 
 

5 Summary 

Notched tension tests on a 1.0 mm thick DP600 sheet steel material was conducted. Using both a digital 
camera and an infrared camera, the deformation on the surface of the specimen was correlated to the 
maximum surface temperature. A user subroutine was used to include the Taylor-Quinney coefficient 
as a function of the equivalent plastic strain, and the temperature increment versus the engineering 
strain was optimized against the experimental values from thermo-coupled simulations. Excellent 
agreement between simulation and experiment was obtained, both in terms of force vs. engineering 
strain, and temperature increment vs. engineering strain. Based on the numerical optimization, the 
Taylor-Quinney coefficient is found to vary quite significantly with the plastic strain and approaches unity 
with large plastic deformations due to a balance between storage and annihilation of dislocations. This 
variation of the Taylor-Quinney coefficient can be explained from thermodynamics and an analytical 
expression for 𝛽(𝑝) is derivable using the constitutive model adopted in this work.  
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