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1 Introduction 
A deep understanding of advanced material plasticity and fracture is one of the cornerstones 
of mechanical engineering to overcome present and future challenges in the automotive 
industry with respect to lightweight multi-material body solutions.  
The von Mises plasticity model is well-known and efficiently implemented in the various CAE 
solvers conventionally used in the automotive industry. One of the principal characteristics of 
the von Mises model is the assumption of isochoric plasticity (i.e. no change of volume is 
caused by yielding). The literature and experiments show that some materials, like extruded 
aluminium or polymers, exhibit non-isochoric plastic behaviour. Since this effect cannot be 
captured by the von Mises plasticity model, an optimal design for lightweight structural 
solutions is compromised.  
In this paper, the authors propose a clear process to experimentally measure and assess how 
far uniaxially tested materials are from pure isochoric plastic behaviour. This process will be 
named Non-isochoric Plasticity Assessment (NPA). To illustrate the process, NPA will be 
applied to actual experimental results of representative automotive metals and thermoplastics.   
The application of this process will allow automotive CAE engineers to understand whether the 
von Mises plasticity model is appropriate for their analysis or if different material laws are 
required to accurately capture the material plastic behaviour. In addition to this, when fracture 
in the materials needs to be considered as a design parameter, the proper implementation of 
the plasticity mechanisms prior to failure becomes mandatory.  
The paper also revisits fundamental plasticity theory concepts relevant for the use of non-
isochoric plasticity material laws. 
The overall approach described in this paper is validated for shell-based CAE models. 

2 Non-isochoric plasticity theory background 
A non-isochoric plasticity material law considers permanent dilation/compaction deformation 
of the material during plastic loading. This section provides a general description of the 
plasticity theory concepts required for the usage of non-isochoric plasticity material laws. 

2.1 Stress and strain states relationship in non-isochoric plasticity 
Any multiaxial stress state represented by the Cauchy stress tensor 𝛔𝛔 can be decomposed in 
its hydrostatic (𝛔𝛔H) and deviatoric (𝐒𝐒) components (tensor magnitudes in compact notation 
denoted by bold font): 
 
 𝛔𝛔 = 𝐒𝐒 + 𝛔𝛔H (1) 

The hydrostatic stress tensor reads: 
 

𝛔𝛔H = σm𝛅𝛅 = −p𝛅𝛅 =
1
3

tr[𝛔𝛔]𝛅𝛅 (2) 

being σm the mean stress, p the pressure (p = −σm) and 𝛅𝛅 the second order identity tensor. 
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The multiaxial plastic strain state in its rate form �̇�𝓔p developed by the multiaxial stress state 𝛔𝛔 
can also be decomposed in its volumetric and deviatoric components, �̇�𝓔pv and  �̇�𝓔pd 
respectively: 
 �̇�𝓔p = �̇�𝓔pd + �̇�𝓔pv (3) 

The volumetric plastic strain rate tensor �̇�𝓔pv reads: 
 
 �̇�𝓔pv =

1
3
ℰ̇pv𝛅𝛅 =

1
3

tr��̇�𝓔p�𝛅𝛅 (4) 
 
being ℰ̇pv the volumetric plastic strain rate. 
 
Stress and strains are expressed in their true form unless explicitly mentioned. 
Based on the coaxial property of stress and strain states for an isotropic linear elastic material 
law (see [1] and [2]), the Cauchy stress tensor 𝛔𝛔 and the plastic strain rate tensor �̇�𝓔p share the 
same principal directions space ([𝐈𝐈, 𝐈𝐈𝐈𝐈, 𝐈𝐈𝐈𝐈𝐈𝐈] in the figure below). Therefore, 𝛔𝛔 and �̇�𝓔p can be 
represented in the shared coaxial principal stress space. Additionally, the corresponding 
volumetric and deviatoric components of both 𝛔𝛔 and �̇�𝓔p are colinear (i.e. parallel). The diagram 
below illustrates 𝛔𝛔 and �̇�𝓔p and their volumetric-deviatoric components represented in the 
shared coaxial principal stress space in uniaxial conditions. 
 

𝛔𝛔 = 𝛔𝛔H + 𝐒𝐒 

 

 

⇕  ⇕  ⇕ (5) 

�̇�𝓔p = �̇�𝓔pv + �̇�𝓔pd  

 
The dilation angle φ defines the ratio between volumetric and deviatoric plastic strain rates 
developed during plastic loading (as shown in the figures above and below): 
 

• φ > 0º corresponds to plastic dilation (i.e. ℰ̇pv > 0) 
• φ = 0º corresponds to isochoric plasticity or pure shear 

plastic loading 
• φ < 0º corresponds to plastic compaction (i.e. ℰ̇pv < 0) 

 
 
The dilation angle φ is defined by the volumetric and deviatoric plastic strain rate tensor 
modules, ��̇�𝓔pv� and ��̇�𝓔pd� respectively: 
 

tgφ =
��̇�𝓔pv�
��̇�𝓔pd�

 (6) 
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with,  
 

��̇�𝓔pv� = � �̇�𝓔pv: �̇�𝓔pv       &       ��̇�𝓔pd� = ��̇�𝓔pd: �̇�𝓔pd (7) 

 
Regarding the plastic strain evolution: 
 

• volumetric plastic strain states can only be developed by hydrostatic stress states 
• deviatoric (shear) plastic strain states can only be developed by deviatoric stress 

states 
• the total plastic strain state is obtained composing the corresponding volumetric and 

deviatoric components (i.e. �̇�𝓔p = �̇�𝓔pd + �̇�𝓔pv) 
• the total plastic strain rate (�̇�𝓔p) growth direction is defined by the dilation angle φ. 

Thus, the dilation angle plays a relevant role in the flow rule definition of the non-
isochoric plasticity material laws where �̇�𝓔pv is not null (i.e. �̇�𝓔pv ≠ 𝟎𝟎) 

The characterization of the plastic behaviour of a material that exhibits volumetric plastic strain 
while yielding will require the experimental measurement for a material property related to the 
dilation angle. As it will be shown below, it turns out that this material property is the plastic 
Poisson’s ratio. 
The deviatoric plastic strain rate tensor module ��̇�𝓔pd� can be expressed as a function of the 
equivalent plastic strain rate ℰ̇peq: 
 

ℰ̇peq ≝ �2
3

 �̇�𝓔pd: �̇�𝓔pd = �2/3��̇�𝓔pd�    ⇒   ��̇�𝓔pd� = �3/2 ℰ̇peq (8) 

The volumetric plastic strain rate tensor module can be expressed as a function of the 
volumetric plastic strain rate ℰ̇pv : 

 �̇�𝓔pv =
1
3
ℰ̇pv𝛅𝛅   ⇒    ��̇�𝓔pv� =

1
√3

�ℰ̇pv� (9) 

Therefore, without loss of generality, the expression of the dilation angle can be defined as a 
function of both the equivalent and the volumetric plastic strain rates (dilation/compaction sign 
enforced by the latter): 

 tgφ =
√2
3

ℰ̇pv
ℰ̇peq

 (10) 

Regarding the material plastic dilation and compaction behaviour, the following concepts are 
remarked: 
 

• Only stress states involving hydrostatic tension (σm > 0) can develop plastic dilation 
when yielding 

• Only stress states involving hydrostatic compression (σm < 0) can develop plastic 
compaction when yielding 

Due to the homogeneous nature of the hydrostatic stress, if a volumetric plastic dilation 
material property is experimentally measured for one stress state involving hydrostatic tension 
(σm > 0), the characterization of the rest of hydrostatic tension stress states can be based on 
the experimentally measured property plus the stress state influence (i.e. triaxiality influence).  
In this paper, the material volumetric plastic dilation behaviour is characterized by means of 
the experimental measurement of the plastic Poisson’s ratio in uniaxial tension conditions. 
Volumetric plastic compaction is not in the scope of this paper. 
The general dilation angle expression (Eq. 10) particularized for the uniaxial tension case 
reads: 
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 tgφut =
√2
3

ℰ̇pvut

ℰ̇pequt  (11) 

Let �̇�𝓔put be the characteristic plastic strain rate tensor under uniaxial tension conditions, ℰ̇put the 
uniaxial tension plastic strain rate and νp the material plastic Poisson’s ratio exhibited during 
uniaxial tension yielding: 

 �̇�𝓔put = �
ℰ̇put 0 0
0 −νpℰ̇put 0
0 0 −νpℰ̇put

� (12) 

The dilation angle obtained from the characteristic plastic strain rate tensor in the uniaxial 
tension case reads: 

 tgφut =
��̇�𝓔pvut �
��̇�𝓔pdut �

=
1
√2

1 − 2νp
1 + νp

 (13) 

The expression above shows the direct relationship between the dilation angle and the plastic 
Poisson’s ratio in the uniaxial stress case. Therefore, the volumetric plastic dilation can be 
characterized by means of the experimental measurement of the plastic Poisson’s ratio in 
uniaxial tension conditions plus the stress state influence. 

2.2 Plastic Poisson’s ratio in uniaxial tension conditions 
As explained above, the volumetric plastic dilation will be characterized by means of the 
experimental measurement of the plastic Poisson’s ratio from uniaxial tension tests. 
The volumetric plastic strain rate in uniaxial tension conditions ℰ̇pvut  obtained from �̇�𝓔put reads: 
 
 ℰ̇pvut = tr��̇�𝓔put� = �1 − 2νp��̇�𝓔put (14) 

 
Note that applying the isochoric plasticity assumption into �̇�𝓔put implies setting a constant plastic 
Poisson’s ratio νp equal to 0.5. Then, ℰ̇pvut = 0. 
Using the volumetric plastic strain rate expression above (Eq. 14), the plastic Poisson’s ratio 
can be then expressed as: 

 νp =
1
2�

1 −
ℰ̇pvut

ℰ̇put
� (15) 

 
The equivalent plastic strain rate in uniaxial tension conditions obtained from �̇�𝓔put reads: 
 

 ℰ̇pequt = �2
3

 �̇�𝓔pdut : �̇�𝓔pdut =
2
3 �

1 + νp�ℰ̇put 

 

(16) 

Furthermore, an additional expression of the equivalent plastic strain rate in uniaxial tension 
conditions ℰ̇pequt  can be obtained combining equations (15) and (16). In other words, 
 
 ℰ̇pequt = ℰ̇put −

1
3
ℰ̇pvut  (17) 

2.3 Plastic Poisson’s ratio measured from uniaxial tension experiments 
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Assuming isotropic linear elastic material behaviour, the material law can be expressed as: 

 𝛔𝛔 = 𝐃𝐃e:𝓔𝓔e = 2G𝓔𝓔ed + 3K𝓔𝓔ev (18) 

being 𝛔𝛔 the Cauchy stress tensor, 𝐃𝐃e the Hooke elasticity tensor, 𝓔𝓔e the elastic strain tensor, 
𝓔𝓔ed the deviatoric elastic strain tensor, 𝓔𝓔ev the volumetric elastic strain tensor (�̇�𝓔ev = 1

3
ℰ̇ev𝛅𝛅 =

1
3

tr��̇�𝓔e�𝛅𝛅), G the shear modulus and K the bulk modulus. 
Direct comparison of the isotropic linear elastic material law and the volumetric-deviatoric 
stress tensor split leads to: 

 𝛔𝛔 = 𝐒𝐒 + 𝛔𝛔H = 2G𝓔𝓔ed + 3K𝓔𝓔ev ⇒ � 𝐒𝐒 = 2G𝓔𝓔ed
𝛔𝛔H = 3K𝓔𝓔ev

 (19) 

Based on the hydrostatic component comparison, the relation between the mean stress σm 
and the elastic volumetric strain ℰev can be expressed as: 

 𝛔𝛔H = 3K𝓔𝓔ev   ⇒   σm𝛅𝛅 = Kℰev𝛅𝛅   ⇒   σm = Kℰev    ⇒    ℰev =
σm
K

 (20) 

The uniaxial tension stress tensor and the corresponding mean stress read: 

 𝛔𝛔ut = �
σut 0 0
0 0 0
0 0 0

�            &          σmut =
1
3

tr[𝛔𝛔ut] =
1
3
σut (21) 

Uniaxial tension true total strains (ℰiut) from engineering strains (ei) read: 

 
ℰiut = ln(1 + ei)    ,     i = 1,2,3 (22) 

with direction 1 parallel to the specimen longitudinal direction, direction 2 parallel to the 
specimen transversal direction and direction 3 parallel to the specimen thickness direction. 
In uniaxial tension conditions the total volumetric strain reads: 

 
ℰvut = ℰ1ut + ℰ2ut + ℰ3ut 

(23) 

 
In order to have all the needed experimental data for this methodology, the uniaxial tension 
tests will require the use of digital image correlation (DIC) tools for the determination of the 
experimental strain distribution.  
If the measurement of the strain in the thickness direction is not available from experiments, it 
can be assumed that strain in the thickness direction e3ut is similar to the transversal strain e2ut. 
The uniaxial true stress reads: 

 σut =
Fut

A0(1 + e2ut)(1 + e3ut)
 (24) 

with Fut the uniaxial tension force, A0 the original specimen cross section and e2ut and e3ut the 
engineering strains in the transverse and thickness direction respectively. 
The uniaxial tension longitudinal plastic strain reads: 

 ℰput = ℰ1ut −
σut
E

 (25) 

being E the material’s Young’s modulus and ℰ1ut the total longitudinal strain. 
Elastoplastic additive decomposition of the total volumetric strain ℰvut reads: 

 ℰvut = ℰevut + ℰpvut  (26) 
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The volumetric plastic strain ℰpvut  can be directly obtained from experimental results subtracting 
the elastic volumetric strain from the total volumetric strain. 
 

ℰvut = ℰevut + ℰpvut  

ℰevut =
σmut

K
 

 
⇓ 
 

ℰpvut = ℰvut −
σmut

K
 

 

with   σmut =
1
3
σut 

(27) 

 
 Mean Stress σmut  vs. Total Volumetric Strain ℰvut (Uniaxial Tension) 

 
Consequently, the plastic Poisson’s ratio can be directly assessed from the uniaxial tension 
experimental results applying the expression: 

 νp =
1
2�

1 −
ℰpvut

ℰput
� (28) 

The plastic Poisson’s ratio measured from the uniaxial tension experiments plus the stress 
state influence will define the volumetric plastic dilation for the rest of stress states involving 
hydrostatic tension (i.e. with σm > 0). 
 

2.4 Plastic work consistency in non-isochoric plasticity 
Isochoric plasticity assumes that only the stresses that generate shape distortion (i.e. 
deviatoric stresses) develop plastic strains in the material while yielding. Consequently, it is 
also assumed that the material cannot develop volumetric plastic strains in this regime. These 
assumptions lead to the definition of a single pair of energetic conjugates to satisfy the required 
plastic work consistency in the von Mises plasticity model. Then, the volumetric strain is 
considered as purely elastic in the material’s behaviour. The isochoric pair of deviatoric 
energetic conjugates are the well-known equivalent von Mises stress σvm and the equivalent 
plastic strain ℰpeq defined as: 

 σvm = �3
2
𝐒𝐒: 𝐒𝐒        &       ℰpeq = �2

3
𝓔𝓔pd:𝓔𝓔pd (29) 

Please note that in isochoric plasticity 𝓔𝓔p = 𝓔𝓔pd because 𝓔𝓔pv = 𝟎𝟎. 
Non-isochoric plasticity requires the consideration of volumetric energetic conjugates in the 
plastic work consistency. Thus, it is necessary to define the equivalent volumetric stress σeqvol 
and the equivalent volumetric plastic strain ℰpeqvol . 
The plastic work concept (Ẇp in its rate form) provides consistency to the material plasticity 
model by associating multiaxial stress states (𝛔𝛔) and multiaxial plastic strain rate states (�̇�𝓔p) to 
the corresponding scalar equivalent magnitudes at both deviatoric and volumetric level. In 
other words, 

 Ẇp = σvm · ℰ̇peq + σeqvol · ℰ̇peqvol  (30) 

σmut versus  ℰvut

Bulk Modulus
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 Ẇp = 𝛔𝛔: �̇�𝓔p = (𝐒𝐒 + 𝛔𝛔H): ��̇�𝓔pd + �̇�𝓔pv� (31) 

 
 
Expanding the plastic work rate in tensorial form (Eq. 31) reads: 

 Ẇp = 𝛔𝛔: �̇�𝓔p = 𝐒𝐒: �̇�𝓔pd + 𝐒𝐒: �̇�𝓔pv + 𝛔𝛔H: �̇�𝓔pd + 𝛔𝛔H: �̇�𝓔pv (32) 

The inner product (i.e. double contraction operator “:”) between two coaxial symmetric second 
order tensors can be understood as the scalar product of the corresponding principal vectors 
represented in the shared coaxial principal stress space. 
Therefore,  
 

• 𝐒𝐒: �̇�𝓔pv = 0 because 𝐒𝐒 and �̇�𝓔pv are perpendicular 
• 𝛔𝛔H: �̇�𝓔pd = 0 because 𝛔𝛔H and �̇�𝓔pd are perpendicular 

Consequently,  

 

Ẇp = 𝛔𝛔: �̇�𝓔p = 𝐒𝐒: �̇�𝓔pd + 𝛔𝛔H: �̇�𝓔pv = Ẇpd + Ẇpv 
 

𝛔𝛔H = σm𝛅𝛅

�̇�𝓔pv =
1
3
ℰ̇pv𝛅𝛅

� ⇒ Ẇpv = 𝛔𝛔H: �̇�𝓔pv = σm
1
3
ℰ̇pv 𝛅𝛅:𝛅𝛅 = σmℰ̇pv 

(33) 

hence, 

 Ẇpv = σeqvol · ℰ̇peqvol = σm · ℰ̇pv ⇒ �
σeqvol = σm
ℰpeqvol = ℰpv

 (34) 

It turns out that the equivalent volumetric stress is the mean stress and the equivalent 
volumetric plastic strain is the volumetric plastic strain. Thus, 
 Ẇp = Ẇpd + Ẇpv = σvm · ℰ̇peq + σm · ℰ̇pv (35) 

Each pair of energetic conjugates represent a different plastic mechanism exhibited by the 
material while yielding: 
 

• σvm and ℰpeq represent the distortional (shear) yielding  
• σm and ℰpv represent the plastic dilation and compaction yielding 

Thus, as discussed in section 2.3, the material plastic dilation/compaction behaviour can be 
assessed and quantified considering the relationships between the volumetric and deviatoric 
plastic mechanisms represented by their energetic conjugates. 
The material energy absorption computed in crashworthiness CAE analysis includes both 
volumetric and deviatoric plastic work when a non-isochoric plasticity material law is used.  
 

3 Non-isochoric Plasticity Assessment (NPA)  
In this section, NPA is illustrated applying the assessment to standard materials used in the 
automotive industry: a high-strength steel, an extruded aluminium and a thermoplastic. 
The main objective of NPA is to assess the non-isochoric material’s behaviour. This is 
performed by means of obtaining the plastic Poisson’s ratio from uniaxial tension experiments 
and comparing it to the isochoric assumption of νp = 0.5. 
The plot below shows the plastic Poisson’s ratio versus the longitudinal plastic strain, both 
directly obtained from uniaxial tension experimental measurements. 
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Uniaxial tension plastic Poisson's ratio νp vs. Longitudinal plastic strain ℰput 

 
NPA above clearly shows that: 

• For the analysed high-strength steel, the application of von Mises plasticity is 
acceptable. In this case there would be some room for accuracy improvement if non-
isochoric plasticity is considered, but the efforts may not be translated into significant 
enhancements.  

• For the analysed extruded aluminium, the deviation from isochoric plasticity is higher 
than 20%. Therefore, it is recommended to migrate to a material law that incorporates 
non-isochoric plasticity. This recommendation is especially relevant for extruded 
aluminium where the typical tension-compression yield stress asymmetry (i.e. 
strength differential) cannot be captured by pressure-insensitive yield stress surfaces 
(like the von Mises yield stress surface). The plastic Poisson’s ratio in this case could 
be considered constant with respect to the evolution of the plastic strain. 

• For the analysed thermoplastic, the consideration of non-isochoric plasticity is a must 
in order to obtain the necessary CAE accuracy levels to reach an efficient lightweight 
design. In this case the variation of the plastic Poisson’s ratio with respect to 
evolution of the longitudinal plastic strain should also be considered in the material 
law. 

It is important to recall that in the von Mises plasticity model, volumetric stresses can only 
generate elastic volumetric strains. In materials showing a relevant part of volumetric plastic 
strain, this mechanism drives the material plastic dilation and the subsequent degradation of 
the material properties caused by micro-voids nucleation and growth. Plastic dilation is 
normally the precursor of material failure, finally caused by shear mechanisms (deviatoric 
plastic strains) when the coalescence of these micro-voids occurs in the shear bands. 
Therefore, in order to apply a controlled-fracture driven body design approach, accurate 
crashworthiness CAE analysis requires the use of advanced plasticity material laws to achieve 
lightweight and efficient body solutions.  
The figures below show thermoplastic (left) and aluminium (right) broken specimens, tested in 
quasi-static conditions. In both cases, specimens exhibit volumetric plastic dilation (micro-
voids nucleation, growth and coalescence) in the centre of the fracture surface and shear 
plastic bands and fracture outside the core region. In the case of the thermoplastic, crazing 
and fibrillation can also be seen. 
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2004 Hadal et al.  [3] 2017 Chen et al. [4] 

Thermoplastic plasticity and fracture Extruded aluminium plasticity and fracture 
 
Generally, regarding ductile linear elastic isotropic materials, we can define two material 
families: 

• materials where the void nucleation starts with the fracture onset (e.g. most steels); 
• and materials where the void nucleation and growth start with the plasticity onset (e.g. 

thermoplastics and extruded aluminium) 

For the first family of materials, void nucleation, growth and coalescence can be completely 
implemented in the material fracture constitutive model because there is no volumetric plastic 
strain history before the fracture onset.  
For the second family of materials, void nucleation and growth need to be implemented in the 
material plasticity law: 

• for capturing the actual material plastic behaviour (i.e. volumetric and shear yielding);  
• and for providing to the fracture model the volumetric plastic strain history before the 

fracture onset to accurately predict the void growth and coalescence in the material 
fracture region. 

It is for these reasons that non-isochoric plasticity material laws are required to accurately 
capture the material fracture in materials like thermoplastics and extruded aluminium that 
exhibit volumetric plastic dilation (i.e. void nucleation and growth) from the beginning of 
yielding. The main objective is to build up a triaxiality-based ductile failure envelope driven by 
both volumetric & deviatoric plastic mechanisms. 

4 SAMP-1 and SAMP-Light: Non-isochoric plasticity material laws  
NPA provides CAE engineers a clear process to understand when the isochoric plasticity 
assumption is acceptable. Based on the authors’ experience, alternative material laws should 
be investigated whenever the deviation from the isochoric plasticity assumption is higher than 
20%. When this occurs, taking as reference LS-Dyna CAE solver, the use of laws considering 
non-isochoric behaviour, such as SAMP-1 (*MAT_187) or SAMP-Light (*MAT_187L) are 
recommended. 
SAMP-1 and SAMP-Light include all necessary features to capture the material non-isochoric 
plastic behaviour together with a pressure-dependent yield surface able to properly represent 
tension-compression yield stress asymmetries.  
SAMP-1 and SAMP-Light consider the same non-associated flow rule. Thus, the main contents 
of this section are valid for both material cards. 
All CAE results shown in this section come from shell-based FE-models. 

Volumetric plastic dilation & fracture 

Shear plasticity & fracture 
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4.1 SAMP-1 and SAMP-Light dilation angle & plastic Poisson’s ratio 
In SAMP-1 the material volumetric plastic dilation can be characterized under uniaxial tension 
and compression plastic loading conditions. 
The objective of this section is to review how the experimentally measured material plastic 
Poisson’s ratio is incorporated into the SAMP-1 plasticity model. The dilation angle consistency 
will be the non-isochoric plasticity theory concept used to incorporate the plastic Poisson’s 
ratio into both SAMP-1 and SAMP-Light material laws. 
In SAMP-1 non-associated flow rule (FR superscript), the volumetric plastic dilation is 
controlled in the flow tensor 𝐍𝐍 by means of the dilation angle coefficient α that is defined in the 
plastic potential g. SAMP-1 and SAMP-Light flow rule reads: 

 �̇�𝓔pFR = λ̇ 𝐍𝐍 = λ̇
𝜕𝜕g
𝜕𝜕𝛔𝛔

      with     g ≝ �σvm2 + αp2 (36) 

where λ is a nonnegative scalar associated with the evolution of the plastic deformation 
process also known as the plastic multiplier. 
The flow tensor 𝐍𝐍 is defined as the normal of the flow rule plastic potential surface g in the 
coaxial principal stress space: 

 𝐍𝐍 = ∇g =
𝜕𝜕g
𝜕𝜕𝛔𝛔

=
3

2g
𝐒𝐒 +

α
3g
𝛔𝛔H (37) 

SAMP-1 flow tensor 𝐍𝐍 and the quadratic yield surface f are represented below in the σvm-p 
meridian plane from the coaxial principal stress space together with the dilation angle depicted 
in uniaxial tension conditions. 
 

 

 
 
The flow tensor 𝐍𝐍 and the dilation angle φ both define the growth direction of the plastic strain 
rate tensor �̇�𝓔p. 
 
The general dilation angle expression obtained from the flow rule plastic strain rate tensor (�̇�𝓔pFR) 
reads: 

 tgφFR =
��̇�𝓔pvFR�
��̇�𝓔pdFR�

=
λ̇ ‖𝐍𝐍v‖
λ̇ ‖𝐍𝐍d‖

=
√2
3
ηα (38) 

being α the flow rule dilation angle coefficient, η = σm/σvm the stress triaxiality, and ‖𝐍𝐍v‖ and 
‖𝐍𝐍d‖ the modules of the volumetric and deviatoric flow tensor components respectively 
(dilation/compaction sign enforced by stress state represented by the stress triaxiality η). 
The combination of equation (38) and (10) leads to: 
 

  
ℰ̇pv
ℰ̇peq

= ηα  (39) 

 g = σvm2 + αp2

p

σvm

3

1

3

1

gt
gsh

gc

fg = 0

𝐍𝐍 =
𝜕𝜕g
𝜕𝜕𝛔𝛔

φ

fg = g− σyg

φ �̇�𝓔pd
�̇�𝓔p = λ̇ 𝐍𝐍 = λ̇

𝜕𝜕g
𝜕𝜕𝛔𝛔

𝜕𝜕f
𝜕𝜕𝛔𝛔

3
1Uniaxial

Tension

�̇�𝓔pv 𝐟 = 𝟎𝟎
SAMP-1

Von Mises

p

σvm

f =  σvm2  − A0 − A1p− A2p2

g = σvm2 + αp2
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which represents a general relationship in SAMP-1 between the volumetric and equivalent 
plastic strain rates, the von Mises and mean stresses (i.e. the four physical magnitudes that 
define the volumetric and deviatoric plastic work energetic conjugates) and the dilation angle 
coefficient α. 
Equation (39) clearly shows the influence of the stress state in the material plastic dilation 
behaviour. Stress states with higher triaxialities lead to proportionally higher volumetric plastic 
strains development with respect to the deviatoric ones (i.e. higher ℰ̇pv/ℰ̇peq ratio). Thus, as 
expected, biaxial tension conditions will generate higher ℰ̇pv/ℰ̇peq ratio than uniaxial tension 
conditions. 
Particularizing tgφFR (Eq. 38) for the uniaxial tension case (ηut = 1/3) reads: 

 tgφutFR =
√2
3
ηut α (40) 

Recalling from section 2.1, the general expression of the dilation angle defined as a function 
of both the equivalent plastic strain rate and the volumetric plastic strain rate particularized for 
the uniaxial tension case (Eq. 11) reads:  

 tgφut =
√2
3

ℰ̇pvut

ℰ̇pequt  (41) 

Consequently, combining equations (40) and (41) the dilation angle coefficient α can be 
expressed as a function of measurable plastic deformations in the uniaxial tension 
experiments: 

 tgφut = tgφutFR     ⇔     α =
ℰ̇pvut/ℰ̇pequt

ηut
= 3

ℰ̇pvut

ℰ̇pequt  (42) 

The relationship between the plastic Poisson’s ratio νp and the dilation angle coefficient α is 
obtained by enforcing dilation angle consistency in uniaxial stress state conditions. Thus, the 
dilation angle obtained from the characteristic plastic strain rate tensor in the uniaxial tension 
case (Eq. 13) and the one obtained from the flow rule (Eq. 40) need to agree. In other words, 

 tgφut =
��̇�𝓔pvut �
��̇�𝓔pdut �

=
1
√2

1 − 2νp
1 + νp

 ≝  tgφutFR =
��̇�𝓔pvFR|ut�
��̇�𝓔pdFR|ut�

=
√2
9
α (43) 

hence, 

 tgφut ≝ tgφutFR     ⇔     α =
9
2

1 − 2νp
1 + νp

  &  νp =
9 − 2α
18 + 2α

 (44) 

Both plastic Poisson’s ratio and dilation angle coefficient expressions respect the dilation angle 
consistency condition. In other words, 

  
α = 3

ℰ̇pvut

ℰ̇pequt

νp =
1
2�

1−
ℰ̇pvut

ℰ̇put
�

 

⎭
⎪
⎬

⎪
⎫

 ⇔ νp =
9 − 2α
18 + 2α

    &    α =
9
2

1 − 2νp
1 + νp

 (45) 

As a summary regarding the material dilation angle φ, dilation angle coefficient α and plastic 
Poisson’s ratio νp in SAMP-1 and SAMP-Light: 

• The dilation angle φ depends on both: 
- the stress state triaxiality η as well as; 
- the dilation angle coefficient α which is characterized in uniaxial conditions by 

means of the measurement of the plastic Poisson’s ratio νp. 
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• The dilation angle coefficient α can be understood as the material plastic dilation 
(represented by the ℰ̇pv/ℰ̇peq ratio) normalized by the stress triaxiality of the 
corresponding plastic loading stress state. In other words, 

 α =
ℰ̇pv/ℰ̇peq

η
 (46) 

• In uniaxial tension conditions, the dilation angle coefficient α only depends on the 
plastic Poisson’s ratio νp. 

• For a given yield stress surface size, both the dilation angle coefficient α and the 
plastic Poisson’s ratio νp are constant for all stress states involving hydrostatic 
tension. 

• The plastic Poisson’s ratio νp only evolves when the yield stress surface grows (i.e. 
due to the plastic strain progress). 

• The plastic Poisson’s ratio νp can be defined as a function of both uniaxial tension 
and compression plastic strains. 

The actual yield surface geometry in the principal stress space can be studied in the meridian 
plane diagram that relates the deviatoric stress tensor module to the hydrostatic stress tensor 
module (‖𝐒𝐒‖ and ‖𝛔𝛔H‖ respectively). The latter (i.e. ‖𝛔𝛔H‖) affected by the pressure sign to 
differentiate between hydrostatic tension and compression (i.e. ‖𝛔𝛔H‖∗ ≝ ‖𝛔𝛔H‖ sign(p) =
√3|p| sign(p) = √3 p). In the ‖𝐒𝐒‖-‖𝛔𝛔H‖∗ diagram the dilation angle obtained from equation (38) 
can be directly used to plot the growth direction of the plastic strain tensor. 
 

 
 
The figure above illustrates the SAMP-1 general quadratic yield surface and the plastic strain 
tensor growth direction imposed by SAMP-1 non-associated flow rule. Both are shown in the 
‖𝐒𝐒‖-‖𝛔𝛔H‖∗ meridian plane of the coaxial principal stress space.  
 
The figure below illustrates the SAMP-Light linear yield surface and the plastic strain tensor 
growth direction imposed by SAMP-Light non-associated flow rule. Both are shown in the ‖𝐒𝐒‖-
‖𝛔𝛔H‖∗ meridian plane of the coaxial principal stress space. 
 
 

𝛔𝛔H ∗ = 3p

𝐒𝐒 = 2/3 σvm

f = 0
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𝜕𝜕g
𝜕𝜕𝛔𝛔�bt
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2

1 − 2νp
1 + νp

   ;   η =
σm
σvm

�̇�𝓔pv

φ
�̇�𝓔p

�̇�𝓔pd

g = σvm2 + αp2
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2g𝐒𝐒 +

α
3g𝛔𝛔H

�̇�𝓔p



13th European LS-DYNA Conference 2021, Ulm, Germany 
 
 

 
© 2021 Copyright by DYNAmore GmbH 

 
4.2 SAMP-1 and SAMP-Light experimental inputs consistency 
In order to achieve a proper level of correlation and numerical stability when SAMP-1 is used, 
it is required to ensure the experimental inputs consistency. The combination of the 
expressions and relations from the previous section in uniaxial tension conditions leads to the 
following deviatoric and volumetric plastic strain rate tensor expressions. 
 

�̇�𝓔pdut =

⎣
⎢
⎢
⎢
⎡ℰ̇peq

ut 0 0

0 −
1
2
ℰ̇pequt 0

0 0 −
1
2
ℰ̇pequt

⎦
⎥
⎥
⎥
⎤

 �̇�𝓔pvut =

⎣
⎢
⎢
⎢
⎢
⎡
1
3
ℰ̇pvut 0 0

0
1
3
ℰ̇pvut 0

0 0
1
3
ℰ̇pvut ⎦

⎥
⎥
⎥
⎥
⎤

 (47) , (48) 

with, 

 ℰ̇pequt = �2
3
�̇�𝓔pdut : �̇�𝓔pdut =

2
3 �

1 + νp�ℰ̇put = ℰ̇put −
1
3
ℰ̇pvut  (49) 

 ℰ̇pvut = �1 − 2νp��̇�𝓔put = ℰvut −
σmut

K
 (50) 

SAMP-1 total plastic strain rate tensor expression can be directly obtained by summing up the 
volumetric and deviatoric plastic strain tensors above.  
 
Obtaining from uniaxial tension experiments the volumetric-deviatoric split of both the total 
strain tensor (𝓔𝓔v and 𝓔𝓔d) and the plastic strain tensor (𝓔𝓔pv and 𝓔𝓔pd) allows the direct validation 
of the material card experimental inputs consistency in uniaxial tension conditions. Thus, the 
evolution of the stress and strain tensors built up from uniaxial tension experimental data 
should always satisfy: 

 𝛔𝛔ut = 2G�𝓔𝓔dut − 𝓔𝓔pdut �+ 3K�𝓔𝓔vut − 𝓔𝓔pvut � = 𝐒𝐒ut + 𝛔𝛔Hut (51) 

The deviatoric and hydrostatic stress tensors can also be quantified from the experimentally 
measured engineering stress and strains. 

Biaxial
Tension

Uniaxial
Tension

Pure Shear

Uniaxial
Compression

Von Mises
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In the SAMP-1 work frame, equation (51) imposes an additional consistent plastic Poisson’s 
ratio expression based on experimentally measured variables already defined in this work:  

 νp = −
ℰ2ut + ν σut/E
ℰ1ut − σut/E

 (52) 

which clearly reduces to the classic plastic Poisson’s ratio definition: 

 νp = −
ℰp trans
ut

ℰp long
ut  (53) 

Being ℰp long
ut  and ℰp trans

ut  the uniaxial tension longitudinal and transverse plastic strains 
respectively. 
 
Additionally, the stress-strain user-input curves in SAMP-1 and SAMP-Light (e.g. tension, 
compression and shear) need to provide an overall consistent and stable convex yield stress 
surface growth.  
 
Experimental inputs consistency is especially relevant for securing quality, reliability, numerical 
stability and reasonable computational cost of the material card when used in full vehicle 
crashworthiness CAE analysis. 
 
This work shows that the consistent evaluation of the plastic Poisson’s ratio based on both 
plasticity theory and actual physical test results is a key factor for the quality and reliability of 
non-isochoric material laws. The consistent approach has been fully validated for shell 
elements providing robust, reliable and numerically stable shell-based crashworthiness CAE 
analysis. 
 

4.3 Non-isochoric plastic work in SAMP-1 and SAMP-Light 
As explained in section 2.4, non-isochoric plasticity material laws consider the plastic work 
from both deviatoric (shear) and volumetric yielding for the computation of the material energy 
absorption. 
Based on energy conservation principles, both von Mises and SAMP-1 plasticity models under 
the same monotonic plastic loading conditions must deliver the same total plastic work rate 
Ẇp. In other words, 

 Ẇp = Ẇpd
vm + Ẇpv

vm = σvm · ℰ̇peqvm  (54) 

 Ẇp = Ẇpd
samp + Ẇpv

samp = σvm · ℰ̇peq
samp + σm · ℰ̇pv

samp (55) 

 
In the von Mises model, the total plastic work is only due to the shear plastic mechanism (i.e. 
ℰ̇pvvm = 0) and, in SAMP-1, the total plastic work is distributed between shear and volumetric 
plastic mechanisms. 
 
The combination of equations (54) and (55) leads to: 
 

 ℰ̇peq
samp = ℰ̇peqvm − η ℰ̇pv

samp   with   η = σm/σvm (56) 

 
In the comparison between von Mises and SAMP-1 plasticity models it is important to remark 
that in SAMP-1 the equivalent plastic strain expression is influenced by the presence of the 
volumetric plastic strain. Uniaxial tension, biaxial tension and pure shear conditions will be 
analysed in this section to illustrate this influence. 
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Let ℰ̇pbt and ℰ̇psh be the biaxial tension and pure shear plastic strain rates as defined in SAMP-
1: 

 ℰ̇pbt = ℰ̇bt − (1 − ν)
σbt
E

      ,      ℰ̇psh = ℰ̇sh −
σsh
2G

 (57) 

Let �̇�𝓔pbt and �̇�𝓔psh be the SAMP-1 characteristic plastic strain rate tensors under biaxial tension 
and pure shear conditions and νp the plastic Poisson’s ratio exhibited during uniaxial tension 
yielding: 

 �̇�𝓔pbt =

⎣
⎢
⎢
⎢
⎡ℰ̇p

bt 0 0
0 ℰ̇pbt 0

0 0 −2
νp

1 − νp
 ℰ̇pbt⎦

⎥
⎥
⎥
⎤
     ,     �̇�𝓔psh = �

0 ℰ̇psh 0
ℰ̇psh 0 0

0 0 0
� (58) 

The table below summarizes the expressions of the plastic work deviatoric and volumetric 
energetic conjugates for von Mises and SAMP-1 models under different loading conditions. 
 
 

Loading 
condition 

Von 
Mises 
stress 
σvm 

Mean 
stress 
σm 

Stress 
Triaxiality 
η =

σm
σvm

 

Von Mises 
equivalent 

plastic strain  
ℰ̇peqvm  

SAMP 
equivalent 

plastic strain 
ℰ̇peq
samp 

Volumetric 
plastic strain 

ℰ̇pv 

Uniaxial 
tension σut 

1
3
σut 

1
3
 ℰ̇put 

ℰ̇put −
1
3
ℰ̇pvut  

�1 − 2νp�ℰ̇put 2
3 �

1 + νp�ℰ̇put 

Biaxial 
tension σbt 

2
3
σbt 

2
3
 2ℰ̇pbt 

2ℰ̇pbt −
2
3
ℰ̇pvbt  

2
1 − 2νp
1 − νp

 ℰ̇pbt 2
3

1 + νp
1 − νp

 ℰ̇pbt 

Pure 
shear √3 σsh 0 0 

2
√3

ℰ̇psh 
2
√3

ℰ̇psh 0 

 
Plastic work rates for both von Mises and SAMP-1 models under different loading conditions 
are summarized in the tables below. 
 
 

Uniaxial 
Tension 

Shear plastic 
work rate 

Ẇpd = σvm ℰ̇peq 

Volumetric plastic 
work rate 

Ẇpv = σm ℰ̇pv 

Total plastic 
work rate 

Ẇp = Ẇpd + Ẇpv 

Von Mises 
(MAT 24) σut ℰ̇put 0 σut ℰ̇put 

SAMP-1 σut �ℰ̇put −
1
3
ℰ̇pvut� 

1
3
σut ℰ̇pvut  σut ℰ̇put 
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Biaxial 
Tension 

Shear plastic 
work rate 

Ẇpd = σvm ℰ̇peq 

Volumetric plastic 
work rate 

Ẇpv = σm ℰ̇pv 

Total plastic 
work rate 

Ẇp = Ẇpd + Ẇpv 

Von Mises 
(MAT 24) σbt �2ℰ̇pbt� 0 2σbt ℰ̇pbt 

SAMP-1 σut �2ℰ̇pbt −
2
3
ℰ̇pvbt� 

2
3
σbt ℰ̇pvbt  2σbt ℰ̇pbt 

 

Pure 
Shear 

Shear plastic 
work rate 

Ẇpd = σvm ℰ̇peq 

Volumetric plastic 
work rate 

Ẇpv = σm ℰ̇pv 

Total plastic 
work rate 

Ẇp = Ẇpd + Ẇpv 

Von Mises 
(MAT 24) √3 σsh

2
√3

ℰ̇psh 0 2σsh ℰ̇psh 

SAMP-1 √3 σsh
2
√3

ℰ̇psh 0 2σsh ℰ̇psh 

 
Volumetric and shear plastic work split is the necessary base to develop reliable CAE models 
which properly predict the fracture behaviour in materials that exhibit volumetric plastic dilation 
from the plasticity onset. 
 

4.4 Application on extruded aluminium and thermoplastic 
This section briefly shows the benefits of using SAMP-1 material law over an extruded 
aluminium and a thermoplastic, both being standard automotive materials. Both materials can 
be considered linear elastic isotropic materials for which void nucleation and growth start with 
the plasticity onset. Therefore, the material yielding response can be captured with a non-
isochoric material plasticity law like SAMP-1. 
The pictures below show shell-based CAE results versus physical experiments. For extruded 
aluminium the benefits of SAMP-1 are shown based on the uniaxial tensile and pure shear 
tests. For the thermoplastic the benefits are shown based on uniaxial tension and dart impact 
tests. 
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For both extruded aluminium alloys and thermoplastics in crashworthiness CAE analysis the 
material law needs to: 
 

• capture the tension-shear-compression yield stress asymmetry by means of the yield 
stress surface shape and growth driven by tension, shear and compression plastic 
behaviour; 

• develop the correct volumetric-deviatoric plastic strain ratio (i.e. ℰ̇pv/ℰ̇peq ratio) by 
means of the non-associated plastic potential driven by the stress state triaxiality and 
the plastic dilation behaviour, the latter defined as a function of the plastic Poisson 
ratio in uniaxial tension conditions (i.e. ℰ̇pv/ℰ̇peq = ηα with α = f�νput�); 

• and isotropically degrade the material properties due to both hydrostatic and shear 
plastic mechanisms caused by the coexisting volumetric and deviatoric stress states 
respectively. 

The above-mentioned objectives are achieved combining SAMP-1 and eGissmo (i.e. 
*MAT_ADD_GENERALIZED_DAMAGE). This approach shows a proper level of correlation 
between shell-based CAE and experimental results for the extruded aluminium and the 
thermoplastic studied in this paper. 
Extruded aluminium experimental results clearly show that pure shear plastic behaviour does 
not respect von Mises plasticity assumptions (i.e. σyieldshear > σyieldtension/√3). Therefore, a pressure-
dependent yield surface is required. Material degradation due to void nucleation and growth 
(i.e. volumetric damage) appears in the plastic region before void coalescence and shear 
damage dominates the final material fracture.  
In the thermoplastic case, it is important to remark that dart impact test conditions can be 
understood as dynamic biaxial tension conditions. Biaxial tension conditions lead to higher 
material plastic dilation when compared to uniaxial tension conditions due to the higher both 
mean stress and stress triaxiality. Therefore, the good correlation for both uniaxial tension and 
dart impact confirms the approach of characterizing the plastic dilation behaviour from uniaxial 
tension and introducing the influence of different stress states by means of the stress state 
triaxiality. Tension-compression yield stress asymmetry and volumetric-shear damage are also 
relevant material behaviours to be considered in the material card generation for 
thermoplastics. 
The consistency and numerical stability of the shell-based material cards for the studied 
aluminium extrusion and thermoplastic is secured by means of the application of the approach 
described in previous sections. 

5 Conclusions  
Although classically, automotive body materials have been considered to exhibit isochoric 
plasticity, relevant structural materials show non-isochoric plastic behaviour. Non-isochoric 
plasticity can be crucial for the achievement of an efficient lightweight design where the 
prediction of the material crash performance and fracture needs to be robust and reliable. This 
paper provides a clean process to assess when body structural materials deviate from the 
classic isochoric plasticity assumption.  
Understanding that Digital Image Correlation is today an industry standard in the uniaxial 
tension test setup, Non-isochoric Plasticity Assessment does not require additional 
experimental efforts to be applied. The necessary experimental data is already available in 
most OEMs material databases. NPA application over the complete material database will 
provide valuable information regarding the plasticity accuracy of the CAE material cards. 
Once NPA is assessed, CAE engineers can decide which is the most appropriate material law 
based on an objective experimental data analysis. 
Choosing the correct material law can result in an improvement of design lightweight efficiency 
of between 10% and 20% depending on the material, component geometry, manufacturing 
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technology and performance requirements. The accurate implementation of plasticity becomes 
mandatory when material fracture is a central design parameter. 
A general description is provided regarding plasticity theory concepts required for the usage 
of non-isochoric plasticity material laws. The relation between the plastic Poisson’s ratio and 
the plastic dilation behaviour is described to define the incorporation of the non-isochoric 
plastic material behaviour in SAMP-1 and SAMP-Light LS-Dyna material laws. An approach 
for the validation of the experimental input data consistency for both SAMP-1 and SAMP-Light 
material laws is also proposed. 
The overall approach is finally applied and validated on an extruded aluminium and a 
thermoplastic showing a proper level of correlation between CAE and experimental results for 
shell-based FE-models. 
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