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1 Introduction 
Thermoplastics are widely used in many industries today. Products such as packaging solutions, 
consumer goods, medical devices, furniture, electronic devices and vehicles are constantly 
demanding more and more sophisticated polymer components. In addition, sustainability agendas at 
many companies today means a necessity to transition from high spec petroleum-based polymers to 
recycled and biobased alternatives [1]. This creates a pressure on the CAE departments to assess 
candidate resins at a high pace and make fact-based judgements on their predicted life cycle 
performance. In a competitive market, there are good reasons to adopt best practice for predicting the 
life cycle performance of these polymers already during the design phase with the use of realistic 
simulation. 
Advanced rheological network models have changed the game of modelling polymers, offering 
unmatched predictions simply because the constitutive foundation is based on polymer chain 
interactions rather than metal elasto-plasticity or linear viscoelasticity (prony). In contrast to elasto-
plastic models that were primarily designed to mimic elasticity and dislocation movement in crystalline 
metal structures, polymers behave fundamentally different and are not fairly characterized with a 
stress-strain history alone. Typically, polymers are better described as fluids with time, temperature 
and stress dependency. Any attempt to adopt metal-purpose models for use in polymers, by adding 
time and temperature data, result in look-up-table type of models that are unfortunately still unable to 
mimic nontrivial loading scenarios involving time effects. Rheological network models on the other side 
are fundamentally closer to the micro mechanics of the polymer chain interactions and can therefore 
naturally handle scenarios such as impact, stress relaxation, creep and recovery in any order and any 
time span by design. Generally speaking thermoplastics and filled/unfilled elastomers are well suited 
for this type of modelling approach, especially if one desire to consolidate many existing single 
purpose models of the same material into a single model (it is not uncommon to use separate models 
for impact, creep, elevated temperature etc). 
The era of non-linear rheological network models began with Bergström-Boyce [2] and Eight-Chain 
models [3]. Those were commercialized for elastomers with one viscous link which limited the potential 
use for thermoplastics, but they have been available for two decades in FE-codes. Since then, Jörgen 
Bergström [4,5] has completely dominated the field of implementation and calibration of rheological 
network models. The practical usage is based on a licensed third party (subroutine) solution that plugs 
into major FE-codes. By tailoring the networks for specific families of polymers and elastomers, 

Fig. 1 Examples of plastic products and products with polymer components 
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remarkable fitting has been shown for multiple complex load cases with emphasis on the time 
dimension. The concept is based on flexible combinations of springs, advanced dampers, plasticity, 
mullins effect, failure and even anisotropy in parallel networks. Among the earliest adopters we find 
manufacturers of medical and mobile devices, tires and food packages. Hand in hand with the 
development and availability of sophisticated calibration tools this family of models are gaining more 
attention and implementation in the industry. 
In this paper we present a readily available approach to rheological modeling in LS-DYNA [6], to 
provide users with simple alternatives to more advanced models [4]. This makes use of a particular 
branch of the keyword MAT_ADD_INELASTICITY, in which fairly general nonlinear viscoelastic 
network models can be created to capture the time dependent features seen in thermoplastics. In 
addition, we discuss the aspects of parameter fitting to these kinds of network models as it constitutes 
an important part of advanced material modeling. Finally we show the viscoelastic effects in a simple 
application example. 
 

2 MAT_ADD_INELASTICITY 

 
2.1 Background 
The keyword MAT_ADD_INELASTICITY is intended for complementing standard LS-DYNA material 
models with inelastic effects in order to enhance their default characteristics. As an example, a 
promising material model may be complete except for the lack of creep behavior, which is then 
remedied by adding a viscoelastic model of interest. This usage can be extended to form inelastic 
networks as schematically illustrated in Fig. 2. The general input format and description of the way the 
inelastic models affect the stress update is explained in detail in the user’s manual. The complete 
exposition is rather comprehensive and here we restrict ourselves to uniaxial deformation and to what 
is otherwise of interest to us in the context of polymeric networks. 

2.2 Theory and Usage by Example 

2.2.1 Base Material 

In principle, the way it works is that the user selects a base material, which is one of the many 
standard material models in LS-DYNA. For things to be concrete, we assume SI units and that the 
base material is a nearly incompressible Neo-Hookean hyperelastic law. The keyword for this is 
 
*MAT_HYPERELASTIC_RUBBER 
$      mid        ro        pr 
         1     1.e-9    0.4995 
$      c10 

Fig. 2 Rheological description of MAT_ADD_INELASTICITY 
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      5.e6 
 
which means that the infinitesimal shear modulus is 𝐺𝐺 = 10 𝑀𝑀𝑀𝑀𝑀𝑀. Upon execution and for a given 
(uniaxial) deformation, this material provides a (uniaxial) stress 𝜎𝜎0 in accordance with the energy 
potential, and the (time) evolution of this stress is used as input for the viscoelastic links to be 
explained next. 

2.2.2 Inelastic Addition 

An example of a simple inelastic plug-in to the material above is 
 
*MAT_ADD_INELASTICITY 
$      mid  nielinks                  g 
         1         1               1.e7 
$  nielaws    weight 
         1       0.8 
$      law     model 
         6         4 
$                  s         p                            q         e 
                1.e6         6                          -.3    0.0001 
 
where the parameter mid references the base material by means of having the same material identity, 
and the other parameters will be explained hereafter. 

2.2.3 Links 

The user should specify a certain number of inelastic links (nielinks) and an estimate of the 
infinitesimal shear modulus (g) of the base material1. Here we only specify one link, and the stress 
evolution for that link is (because of choices made in section 2.2.5) given as 
 
�̇�𝜎1 = �̇�𝜎0 − 𝛽𝛽1𝜎𝜎1.           (1) 
 
Here 𝛽𝛽1 is the relaxation coefficient which in turn has the expression  
 
𝛽𝛽1 = 𝐸𝐸

𝜎𝜎1
𝜀𝜀1̇           (2) 

 
and 𝜀𝜀1 is the creep strain for the link in question, which requires a consitutive law to be specified in 
Section 2.2.5.  

2.2.4 Weights 

Each link must be associated with a relative weight (weight) between zero and one, and the weights 
for all inelastic links should sum up to something less than one. Whatever remains after summation is 
the relative weight given to the purely elastic link. In this example, the only link provided is given a 
weight of 𝑤𝑤1 = 0.8, or 80%. This in turn means that the remaining elastic link is given a relative weight 
of 𝑤𝑤0 = 1 − 𝑤𝑤1 = 0.2, or 20%, and the resulting stress of this particular material is 
 
𝜎𝜎 = 𝑤𝑤0𝜎𝜎0 + 𝑤𝑤1𝜎𝜎1 = 0.2𝜎𝜎0 + 0.8𝜎𝜎1.        (3) 
 
Furthermore, the number of laws used in each link (nielaws) must be specified. While this in general 
could be many, we are here interested in using a single law for each link and this parameter is set 
accordingly. 

2.2.5 Laws 

The law (law) for each link is in this paper specified as a viscoelastic law, meaning it will always have 
a value of 6. The specific model (model) within this family is specified to either 4 (Norton-Bailey) or 5 
(Bergström-Boyce), which determines the evolution of creep strain. For Norton-Bailey we have 
 

 
1 The shear modulus 𝐺𝐺 is required for the general stress update, which is specified in terms of the 
deviatoric stress. For uniaxial deformation, and for making things more understandable, think of it as 
specifying the Young’s modulus 𝐸𝐸. 
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𝜀𝜀1̇ = ��𝜎𝜎1
𝜎𝜎∗
�
𝑝𝑝∗
�(𝑞𝑞∗ + 1)(𝜀𝜀∗ + 𝜀𝜀1)�𝑞𝑞∗�

1
𝑞𝑞∗+1          (4) 

 
and for Bergström-Boyce 
 
𝜀𝜀1̇ = (𝜆𝜆𝑐𝑐 − 1 + 𝜀𝜀∗)𝑞𝑞∗ �

𝜎𝜎1
𝜎𝜎∗
�
𝑝𝑝∗

         (5) 
 
and 𝜆𝜆𝑐𝑐 ≥ 1 is the creep stretch2. The index for the parameters {𝜎𝜎∗, 𝑝𝑝∗, 𝜀𝜀∗, 𝑞𝑞∗} in equations (4-5) are 
dropped for simplifying the expression, but if more than one link is used then obviously each link will 
have a unique set of values for these parameters. In this hypothetical case the values are 
 
𝜎𝜎∗ = 1 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑝𝑝∗ = 6, 𝜀𝜀∗ = 10−4, 𝑞𝑞∗ = −0.3.        (6) 

2.3 Small Deformations 
While the previous section is a simplified, and somewhat incomplete, description of the model, it is 
rather straightforward to depict the general situation. Merely replace the subindex „1“ in equations (1-
5) by 𝑖𝑖 and let it range across all 𝑛𝑛 links. For small deformations, assuming the base material has a 
stress update of the form 
 
�̇�𝜎0 = 𝐸𝐸𝜀𝜀̇ ,           (7) 
 
we can combine equations (1-3) and (7) to see that 
 
�̇�𝜎 = ∑ 𝑤𝑤𝑖𝑖�̇�𝜎𝑖𝑖𝑛𝑛

𝑖𝑖=0 = ∑ 𝑤𝑤𝑖𝑖(�̇�𝜎0 − 𝛽𝛽𝑖𝑖𝜎𝜎𝑖𝑖)𝑛𝑛
𝑖𝑖=0 = ∑ 𝑤𝑤𝑖𝑖 �𝐸𝐸𝜀𝜀̇ −

𝐸𝐸
𝜎𝜎𝑖𝑖
𝜀𝜀�̇�𝑖𝜎𝜎𝑖𝑖�𝑛𝑛

𝑖𝑖=0 = 𝐸𝐸(𝜀𝜀̇ − ∑ 𝑤𝑤𝑖𝑖𝜀𝜀�̇�𝑖𝑛𝑛
𝑖𝑖=0 ) = 𝐸𝐸(𝜀𝜀̇ − 𝜀𝜀�̇�𝐼)  (8) 

 
where ε𝐼𝐼 can be seen as the weighted creep strain across all links. Here we have set 𝜀𝜀0̇ = 𝛽𝛽0 = 0 for 
the purely elastic link, and in the end we note that the combination of nonlinear viscoelastic laws 
results in a stress update familiar from the theory of inelasticity in general. 

3 Parameter Fit 
3.1 Preliminaries 
A good set of material parameters is essential for taking advantage of the richness this material model 
offers. Needless to say, the fit in itself is nontrivial and to begin with we are obliged to answer at least 
the questions in the following subsections. The answers will probably vary depending on the source 
providing them, and here we combine general guidelines from the literature with our own experience. 

3.1.1 What base material should be used? 

As far as the base material is concerned, it makes sense to use a hyperelastic material of relatively 
low order. The basis for this assumption is our belief that the nonlinear effects this polymeric material 
exhibits stem primarily from viscous and/or plastic phenomena rather than nonlinear elasticity. To this 
end we have selected a nearly incompressible Neo-Hookean model where the Poisson‘s ratio is set to 
0.495 and the shear modulus is subject for fitting. The incompressibility can be debated, and while 
there may be reasons to allow compressible behavior we admit that our choice is in part motivated by 
simplicity. 

3.1.2 How many links should we use? 

In addition to the purely elastic component, we use between three and five viscous links to incorporate 
the nonlinear effects. It has been suggested that this provides the potential to represent the physical 
material well enough without adding redundancy to the model, and we find no reason to doubt this 
claim. 

3.1.3 What (non)linear model(s) should the links be composed of? 

To the best of our knowledge, Norton-Bailey and Bergström-Boyce are the models of choice in this 
context. As an interesting comparison we intend to fit both models to the test data in order to deduce 

 
2 The notation in equations (4-5) differs from that in the manual [6], consistency is maintained 
throughout the paper though, and hopefully it won’t add too much confusion to the general 
understanding of the models. 
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which one of the two work horses provides the best fit in this case. It should be emphasized that we do 
not draw general conclusions from this rather non-scientific experiment. 

3.1.4 What tests should the fit be based upon? 

The tests for fitting a material model should in principle be conducted so that the test results, in some 
sense, span the deformation realm the material is subjected to when used for its intended application. 
This not only includes particular directions of deformation but also rate and relaxation effects. For 
simplicity we consider uniaxial tests and focus is turned to capturing the viscous behaviour of the 
material. We have decided to use three types of tests; a uniaxial test, uniaxial tests with 
relaxation/creep and a cyclic test. To be specific, we performed three different tests with 
relaxation/creep, so the total number of tests conducted are five and they will be presented in detail at 
the end of this section. 

3.1.5 What parameters can be selected a priori and which ones should be subject for optimization? 

The links in Norton-Bailey and Bergström-Boyce have a similar set of parameters, these are 
 

• Relative weights 𝑤𝑤1, 𝑤𝑤2,…, 𝑤𝑤𝑛𝑛, restricted by the conditions 0 < 𝑤𝑤𝑖𝑖 ≤ 𝑤𝑤𝑖𝑖 ≤ 𝑤𝑤𝑖𝑖 ≤ 1 and 
∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 𝑊𝑊� < 1. These weights determine the influence a certain link has on the overall 

behaviour. 
• Stress exponents 𝑝𝑝∗ and normalization stress levels 𝜎𝜎∗. Naturally, these are subjected to 

similar constraints, 1 < 𝑝𝑝∗ ≤ 𝑝𝑝∗ ≤ 𝑝𝑝∗ < ∞ and 0 < 𝜎𝜎∗ ≤ 𝜎𝜎∗ ≤ 𝜎𝜎∗ < ∞, and are used for 
characterizing the relaxation effects influenced by the stress level. 

• Strain exponents 𝑞𝑞∗ with constraints −1 < 𝑞𝑞∗ ≤ 𝑞𝑞∗ ≤ 0, used for strain dependent relaxation 
behavior. 

 
These parameters are variables in the optimization algorithm while all others, 𝜀𝜀∗ and 𝐺𝐺, are set in 
advance. Before turning the attention to the algorithm used for the fit, here is a description of the test 
cases. 

3.2 Test Cases 
The material used for the fitting experiment is a Low Density PolyEthylene (LDPE), commonly used for 
products in the consumer and medical industry, and the test data was provided by Tetra Pak. See [7] 
for more info. Stress is in MPa and Time is in seconds if nothing else is stated. 

 
3.2.1 Uniaxial Tension 

The first test is uniaxial tension, see Fig. 3, where the specimen is loaded at a rate of 3% 𝑠𝑠−1 until it 
fails at a strain of about 66%. This is the one test that perhaps should be left out of the mix since it 

Fig. 3 Uniaxial Test, initial stiffness 𝑬𝑬 and guess of 𝝈𝝈∗ are indicated 

𝜎𝜎∗ 

E 
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most certainly incorporates effects that are not represented by the material model at hand. 
Nevertheless, it is included by a completeness argument. 

 
3.2.2 Uniaxial Tension with Loading-Relaxation-Unloading-Creep 

Three uniaxial tension tests with relaxation and creep are included, see Fig. 4, where the specimen is 
loaded at a rate of 3% 𝑠𝑠−1 up to a strain of 12.2%, 26% and 41.3%, respectively. After that, the 

Fig. 4  Relaxation/Creep Tests 
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specimen is held at constant strain while the stress is allowed to relax for one hour. After that, the 
specimen is unloaded to its stress free configuration at a rate of approximately 3 𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠 after which it 
recovers at zero stress for about 20 minutes. 

 
3.2.3 Cyclic Loading and Unloading 

The final test is a test where the specimen undergoes nine cycles of loading and unloading, see Fig. 5. 
The loading rate is 3% 𝑠𝑠−1 and the unloading rate is about 3 𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠. The first three cycles peak at a 
strain of 12.2%, the next three at 26% and the final three at 41.3%. Between each cycle, the specimen 
is at rest for 1 minute. 

3.3 Algorithm 
From an engineering point of view, a set of material parameters is deemed decent if test and 
simulation data match well enough on mere ocular inspection. That is, the model should capture the 
characteristic features of the material and corresponding response curves should be close. Given the 
complexity of this particular material model and the amount of test data required, a trial-and-error 
approach for finding such a set appears hopeless. We are therefore at the mercy of optimization 
algorithms to accomplish this task. In this paper we use an in-house code for parameter fitting for 
which the algorithm is described in detail, and compare this with results obtained with the commercial 
software MCalibration. For the latter we refer to [5] and related documentation. 

Fig. 5 Cyclic Test 
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Fig. 6 Sequences from first relaxation/creep test 

a) 

c) 

b) 
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3.3.1 Objective 

An optimization problem requires an objective function with the property that a perfect match between 
test and simulation data results in a merit value of zero. It should also return increasingly larger values 
as the correlation between test and simulation gets worse. Once this function is determined, the task 
is to minimize it with respect to the constraints discussed in the next section. It is by no means 
straightforward to determine it in a way that “small” function values correlate well with plausible results 
from an engineering point of view, but here is one approach to that challenge. 
The intuitive choice is that of a nonlinear least squares function, where the response from all tests are 
combined to form an error measure to be minimized. Because of the large time scale differences in 
the tests, i.e., loading/unloading in seconds and relaxation/creep in hours, it must be carefully 
designed to properly account for each phase in each test. To this end, we split the response curves in 
sequences, as exemplified in Fig. 6. The first sequence is the loading phase, represented by curve A, 
and the second sequence is the holding phase during which stress relaxation occurs, represented by 
curve B. Then unloading follows in the third sequence, curve C, and the test ends with a phase where 
the strain creeps at zero stress, curve D. For each sequence we compute an error of the form 
 

𝑐𝑐 = �1
𝑇𝑇 ∫ (𝑓𝑓 − 𝑔𝑔)2𝑑𝑑𝑑𝑑𝑇𝑇

0 .          (9) 

 
Here we use 𝑇𝑇 to denote the time duration for the sequence, 𝑓𝑓 = 𝑓𝑓(𝑑𝑑) is the result from simulation and 
𝑔𝑔 = 𝑔𝑔(𝑑𝑑) is the result from test, both functions of time 𝑑𝑑. This provides a time independent merit, so a 
sequence performed in seconds is given similar attention to that performed in hours. Applying (9) to all 
tests and all sequences gives a bunch of 𝑐𝑐𝐽𝐽

𝑗𝑗, where 𝐽𝐽 ranges over all tests while 𝑗𝑗 ranges over all 
sequences within those tests. The objective function is then composed as 
 
𝑜𝑜 = ∑ 𝛾𝛾𝐽𝐽�∑ 𝛿𝛿𝐽𝐽

𝑗𝑗𝑐𝑐𝐽𝐽
𝑗𝑗

𝑗𝑗 �𝐽𝐽           (10) 
 
with 𝛾𝛾𝐽𝐽 and 𝛿𝛿𝐽𝐽

𝑗𝑗 being selected weights for strengthening or weakening the influence of some tests 
and/or sequences. 
The weights in (10) may for the sake of simplicity be chosen as unity, which means that each 
sequence is equally important. A problem arises when a prescribed motion in the first sequence is 
followed by a prescribed force in the second, which happens for instance in the loading/unloading 
situation in Fig. 6. For the first/second sequence, the curves to be compared are that of reaction forces 
due to the prescribed motion, i.e., corresponding to curve A/B in b). For the third/fourth sequence the 
curves to be compared are the creep displacements due to the change in force, i.e., curve C/D in a). 
This means that units are mixed in (10), and as a consequence the 𝛿𝛿𝐽𝐽

𝑗𝑗 must be adjusted for that. This 
adjustment was based on trial-and-error to fine-tune the relative importance between the different 
sequences, and in the end the stiffness factor used for this purpose was 104 𝑀𝑀𝑀𝑀 in all such terms. 

3.3.2 Constraint 

For our material model to make physical sense, we need bounds on the design variables (material 
parameters) and make sure that the sum of weights does not exceed unity. This was formally 
discussed in Section 3.1.5, and the values we use are 
 
𝑊𝑊 = 0.95           (11a) 
𝑤𝑤𝑖𝑖 = 0.01           (11b) 
𝑤𝑤𝑖𝑖 = 1            (11c) 
𝜎𝜎∗ = 1 𝑀𝑀𝑀𝑀𝑀𝑀           (11d) 
𝜎𝜎∗ = 100 𝑀𝑀𝑀𝑀𝑀𝑀           (11e) 
𝑝𝑝∗ = 1.1            (11f) 
𝑝𝑝∗ = 12            (11g) 
𝑞𝑞∗ = −0.99           (11h) 
 

3.3.3 Constants 

The strain perturbation is arbitrarily set to 𝜀𝜀∗ = 10−4 in our optimization, while the choice of 𝐺𝐺 will be 
discussed in the next section. 
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3.4 Results and Discussion 

3.4.1 Strategy 

A multitude of fitting experiments were conducted in order to gain experience and develop a 
reasonable strategy for optimal fitting. In general it is safe to say that the parameters obtained depend 
to a large extent on the selection of weights in (10) as well as the initial guess. Different optimization 
tools are likely to find different parameters simply because of ambiguities in how the optimization 
problem is setup. In particular the inclusion or exclusion of the cyclic test has a large influence on the 
final result, this particular observation will be discussed further below. The strategy we developed was 
partly based on engineering intuition but also drew from what we learned during early attempts. We 
find it general enough to be applicable for other materials and can be described as follows. 
 

1. Select between 3 and 5 inelastic links, in our case we use 4. The intention is to reserve at 
least one of the links to represent plasticity and the other to represent viscous effects. 

2. Set 𝐺𝐺 to 𝐸𝐸/3, where 𝐸𝐸 is the initial slope in the stress vs. strain curve for the uniaxial test. This 
parameter is indicated in Fig. 3 and is in our case fixed to 80 𝑀𝑀𝑀𝑀𝑀𝑀. 

3. Set each of the normalization stresses 𝜎𝜎∗ to 50% of initial yield in the uniaxial tension test, this 
point is highlighted in Fig. 3 and set to 5 𝑀𝑀𝑀𝑀𝑀𝑀 for this material. 

4. Distribute the weights 𝑤𝑤𝑖𝑖 evenly and so that they sum to roughly 90-95%, we used the value 
0.23 for each link. 

5. Let the stress exponents 𝑝𝑝∗ increase from 1 and 12 to represent a fair distribution of 
viscoelasticity and plasticity. We used the values 1.5, 3, 6 and 12. 

6. Set the strain exponents 𝑞𝑞∗ to zero. 
 
This should provide a decent initial guess for the optimization problem. At this point, we decide to fit 
the material parameters to the uniaxial and relaxation tests, thus omitting the cyclic test. Before 
justifying this approach, we present the results from this partial solution.  

3.4.2 W/O Cyclic Test 

As a further refinement and independently of the in-house approach to the problem, the runs with 
MCalibration were performed in steps during which some parameters were held fixed. To be specific, 
the steps were 
 

1. Optimize wrt weights 𝑤𝑤𝑖𝑖 and stress factors 𝜎𝜎∗ only. 
2. Optimize wrt stress exponents 𝑝𝑝∗ only. 
3. Optimize wrt stress exponents 𝑝𝑝∗, weights 𝑤𝑤𝑖𝑖 and stress factors 𝜎𝜎∗ only. 

 
Note that MCalibration for practical reasons was run entirely with displacement driven loadcases even 
though the actual experiments were driven with a mix of displacement and force sequences. This 
influences the appearance of the resulting fitting between MCalibration and in-house calibration since 
deviations show up as stress deviations in one case and strain deviation in the other. Also note that 
the strain exponents 𝑞𝑞∗ are held fixed with this approach. The line of thought is to gradually approach 
the optimum with the purpose of avoiding any local minima, whether this refinement is necessary has 
not been experimentally verified. The results are shown in Fig. 7, in which the notation and units differ 
from what has been presented here, so here is a recapitulation of the parameter values. 
 
𝑤𝑤1 = 0.200           (12a) 
𝜎𝜎1 = 5.48 𝑀𝑀𝑀𝑀𝑀𝑀           (12b) 
𝑝𝑝1 = 1.32           (12c) 
𝑤𝑤2 = 0.311           (12d) 
𝜎𝜎2 = 4.58 𝑀𝑀𝑀𝑀𝑀𝑀           (12e) 
𝑝𝑝2 = 3.07           (12f) 
𝑤𝑤3 = 0.217           (12g) 
𝜎𝜎3 = 4.08 𝑀𝑀𝑀𝑀𝑀𝑀           (12h) 
𝑝𝑝3 = 5.41           (12i) 
𝑤𝑤4 = 0.190           (12j) 
𝜎𝜎4 = 6.39 𝑀𝑀𝑀𝑀𝑀𝑀           (12k) 
𝑝𝑝4 = 20.0           (12l) 
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The fit is excellent, except for discrepancies during sequence three and four (unloading and creep) in 
the relaxation tests. 
The alternate fitting schemes from the in-house approach resulted in the following parameters for 
Norton-Bailey 
 
𝑤𝑤1 = 0.356           (13a) 
𝜎𝜎1 = 39.9 𝑀𝑀𝑀𝑀𝑀𝑀           (13b) 
𝑝𝑝1 = 1.10           (13c) 
𝑞𝑞1 = 0            (13d) 
𝑤𝑤2 = 0.257           (13e) 
𝜎𝜎2 = 20.3 𝑀𝑀𝑀𝑀𝑀𝑀           (13f) 
𝑝𝑝2 = 1.10           (13g) 
𝑞𝑞2 = 0            (13h) 
𝑤𝑤3 = 0.227           (13i) 
𝜎𝜎3 = 7.30 𝑀𝑀𝑀𝑀𝑀𝑀           (13j) 
𝑝𝑝3 = 6.14           (13k) 
𝑞𝑞3 = 0            (13l) 
𝑤𝑤4 = 0.0895           (13m) 
𝜎𝜎4 = 5.65 𝑀𝑀𝑀𝑀𝑀𝑀           (13n) 
𝑝𝑝4 = 12.0           (13o) 
𝑞𝑞4 = −0.956           (13p) 
 
and for Bergström-Boyce in 

Fig. 7 Results from MCalibration 
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Fig. 8 Fitted data for Norton-Bailey (left) and Bergström-Boyce (right) 
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𝑤𝑤1 = 0.307           (14a) 
𝜎𝜎1 = 20.4 𝑀𝑀𝑀𝑀𝑀𝑀           (14b) 
𝑝𝑝1 = 1.18           (14c) 
𝑞𝑞1 = 0            (14d) 
𝑤𝑤2 = 0.275           (14e) 
𝜎𝜎2 = 19.2 𝑀𝑀𝑀𝑀𝑀𝑀           (14f) 
𝑝𝑝2 = 1.22           (14g) 
𝑞𝑞2 = 0            (14h) 
𝑤𝑤3 = 0.230           (14i) 
𝜎𝜎3 = 5.03 𝑀𝑀𝑀𝑀𝑀𝑀           (14j) 
𝑝𝑝3 = 12.0           (14k) 
𝑞𝑞3 = 0            (14l) 
𝑤𝑤4 = 0.108           (14m) 
𝜎𝜎4 = 4.99 𝑀𝑀𝑀𝑀𝑀𝑀           (14n) 
𝑝𝑝4 = 12.0           (14o) 
𝑞𝑞4 = 0            (14p) 
 
and the resulting curves are shown in Fig. 8. As can be seen from these curves, the two models seem 
to provide a reasonable fit given these presuppositions. The objective values are 251224 for Norton-
Bailey and 338004 for Bergström-Boyce, respectively, which from a mathematical standpoint means 
that the former provides a better fit. Examining the resulting material parameters, we note the following 
 

• The first two links in Norton-Bailey as well as Bergström-Boyce tend towards linear 
viscoelastic links, as the exponents 𝑝𝑝1 and 𝑝𝑝2 either attain the lower bound or are close to it. 
These two links might be replaced by a single link, since both appear to model the response 
on a relatively short time scale. 

• The third link in Norton-Bailey appears to be an important contribution to the fit, because of the 
stress activation level and moderate size of stress exponent. 

• The final two links in Bergström-Boyce appear to model the same plastic response and can 
probably be replaced by a single link. 

• The only indication of a strain dependent response is in the fourth link of Norton-Bailey, which 
given the high stress exponent is a plastic link. Given the extreme exponent, it may be 
something for fine-tuning the fit. 

 
The conclusion is that for four links, many different parameter settings are adequate for representing 
the loading and relaxation response of this material. What is not obvious from the graphs is how well 
the unloading and creep phases are fitted. One thing to observe is that the residual strain in all 
relaxation tests is overestimated by the fitted materials. In retrospect our assumption is that the 
MCalibration optimization had a somewhat unbalanced data point distribution, for which the latter parts 
of the experiments (unloading and creep) are given less attention in the fit. For the alternate method it 
comes down to the choice of weight factors, and presumably the load driven phases are not given 
sufficient importance. However, decreasing this weight factor, see discussion at the end of Section 
3.3.1, will probably worsen the results from the displacement driven phases. 

3.4.3 W Cyclic Test 

Adding the cyclic test, and starting the optimization from the parameters obtained in the previous 
section, gives the following for Norton-Bailey 
 
𝑤𝑤1 = 0.409           (15a) 
𝜎𝜎1 = 40.7 𝑀𝑀𝑀𝑀𝑀𝑀           (15b) 
𝑝𝑝1 = 1.10           (15c) 
𝑞𝑞1 = 0            (15d) 
𝑤𝑤2 = 0.283           (15e) 
𝜎𝜎2 = 38.5 𝑀𝑀𝑀𝑀𝑀𝑀           (15f) 
𝑝𝑝2 = 1.10           (15g) 
𝑞𝑞2 = 0            (15h) 
𝑤𝑤3 = 0.109           (15i) 
𝜎𝜎3 = 3.73 𝑀𝑀𝑀𝑀𝑀𝑀           (15j) 
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𝑝𝑝3 = 6.57           (15k) 
𝑞𝑞3 = 0            (15l) 
𝑤𝑤4 = 0.131           (15m) 
𝜎𝜎4 = 6.51 𝑀𝑀𝑀𝑀𝑀𝑀           (15n) 
𝑝𝑝4 = 12.0           (15o) 
𝑞𝑞4 = −0.775           (15p) 
 
and for Bergström-Boyce 
 
𝑤𝑤1 = 0.333           (16a) 
𝜎𝜎1 = 12.2 𝑀𝑀𝑀𝑀𝑀𝑀           (16b) 
𝑝𝑝1 = 1.43           (16c) 
𝑞𝑞1 = 0            (16d) 
𝑤𝑤2 = 0.275           (16e) 
𝜎𝜎2 = 11.9 𝑀𝑀𝑀𝑀𝑀𝑀           (16f) 
𝑝𝑝2 = 1.60           (16g) 
𝑞𝑞2 = 0            (16h) 
𝑤𝑤3 = 0.140           (16i) 
𝜎𝜎3 = 2.20 𝑀𝑀𝑀𝑀𝑀𝑀           (16j) 
𝑝𝑝3 = 12.0           (16k) 
𝑞𝑞3 = 0            (16l) 
𝑤𝑤4 = 0.172           (16m) 
𝜎𝜎4 = 7.54 𝑀𝑀𝑀𝑀𝑀𝑀           (16n) 
𝑝𝑝4 = 12.0           (16o) 
𝑞𝑞4 = 0            (16p) 
 
The first four tests are not affected so much, only small adjustments to that of Fig. 8. The resulting fit 
for the cyclic test is shown in Fig. 9, which we intend to discuss. 

 
Apparently, the model is not capable of accurately fitting the cyclic test, indicating either (i) lack of 
physics in the model, (ii) entrapment in local optimum or (iii) insufficient number of links. We have run 
enough optimizations to discard the hypothesis of this being caused by a local optimum, and since the 
resulting parameters in equations (15-16) indicate a linear dependence between at least the first two 
links we also believe that adding more will not improve this situation. We therefore lean towards the 
first of these explanations, thinking that the amendment of a Mullins effect might improve the situation. 
This is speculative, but might be something to consider in a continuation of this work. 

3.4.4 Observations 

Comparing results from MCalibration and the documented algorithm should be taken lightly, as it turns 
out that the prerequisites for the fitting were different. The base model was different in that of a 
different model and Poisson’s ratio (Mooney-Rivlin model with 𝜈𝜈 = 0.49 vs Hyperelastic Rubber with 
𝜈𝜈 = 0.4995), and presumably the merit function is different between the two approaches. Also, the 

Fig. 9 Results from cyclic test 
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strain exponents were not optimized with MCalibration, the intention is rather to show that both are 
valid approaches to fitting rheological network models. 
The optimization in the previous section was also performed without the pre-optimization presented in 
Section 3.4.2, i.e., the cyclic test was included from the get-go starting with the initial guess given at 
the beginning of Section 3.4.1. It turns out that the result is the same in terms of an almost identical 
objective value, and a conclusion is likely that the pre-optimization is unnecessary. It is however 
confirmed that the initial guess has an influence of the result and it may be worthwhile to develop an 
alternate strategy where several optimizations are performed starting from different initial guesses. 
Nevertheless, the most important aspect is to provide the optimization tool with a model that captures 
the real physics of the material, which is not the case when including the cyclic test. Once such a 
model is cemented, it may turn the tables in terms of how a strategy should be designed. 

4 Example 

 
Consider a representative scenario of the life cycle of a plastic component. It could be subjected to 
 

• sudden loading (snapping, mounting, impact) 
• creep 
• stress relaxation 
• unloading 
• recovery 

 
Typically, we may want to run these loads in 
 

• an arbitrary sequence 
• using implicit solver 
• with contacts 
• with a reasonable simulation time 

 
The demonstration case includes all mentioned aspects and was constructed and computed with two 
alternative material models based on the PolyEthylene test data presented in Section 3.2. one using 
the inelastic model fitted in Fig. 7 and one using the piecewise plasticity material model 24. More 
specifically, the dogbone in Fig. 10 is subjected to a 300𝑔𝑔 weight that is instantly applied and kept for 
one hour during which the creep deformation is observed. A rigid body stopper limits the displacement 
of the body to 15 𝑚𝑚𝑚𝑚. After that the weight is removed, and the dogbone recovers for yet another 
hour. 
The response is given in Fig. 11, in terms of displacements of the weight and contact force between 
the weight and dogbone. First, the plastic material shows a stationary equilibrium point and a 
permanent deformation due to some plastic strain, which is not correlating with thermoplastic behavior 
over this range of time. The rheological material, however, creeps quickly during the first few seconds 
to reach the maximum displacement. While the dogbone is kept at this location, the stress relaxes as 
can be seen from the decay of contact force. The sudden removal of the weight after one hour causes 
the material to recover during the second half of the simulation, resulting in a permanent deformation 
that is attributed to the links with high stress exponents. This example qualitatively shows the viscous 
effects pertaining to thermoplastics and stresses the importance of including this element of reality in 
the modelling of these materials. 

Fig. 10 Dogbone subjected to gravity load 
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5 Summary 
An approach to rheological modelling of polymeric networks that employs a particular branch of 
MAT_ADD_INELASTICITY has been presented. It is shown that models within this framework are 
capable of representing the basic viscoelastic features observed in thermoplastics, e.g., creep and 
relaxation, including nonlinear strain and stress effects. The intention is to make a valid assessment of 
the life-cycle performance of a plastic product in its area of use. A thorough elaboration on parameter 
fitting was provided in hope that it paves the way towards a complete treatment, from calibration to 
simulation, of these models. The work shows that the nonlinear viscoelastic models available in LS-
DYNA (Norton-Bailey and Bergström-Boyce) allow for a good fit to loading and relaxation data, 
whereas more complex loading and unloading scenarios presumably requires additional physics to be 
implemented. 
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Fig. 11 Rigid body displacement and contact force for plastic and rheological material 
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