x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Truck Frame Optimization Considering Crashworthiness, NVH and Static Responses

This paper demonstrates how to efficiently perform optimization for vehicle structures, taking into account nonlinear responses from LS-DYNA crash simulation, as well as responses from linear loading conditions such as NVH and Static. The optimization process is based on the Equivalent Static Load (ESL) method and uses an iterative process which utilizes the non-linear structural analysis results from LS-DYNA and the linear structural analysis and optimization capabilities of GENESIS. With this integration, the combined multidiscipline problem can be solved with only a few LS-DYNA simulations (5 to 10). In addition, large-scale optimization techniques, such as topology, topometry, topography and freeform, can easily be employed. The optimization process and results will be demonstrated using two examples: topology optimization of a beam cross-section under impact and static loading and topometry design of a truck frame under crash, normal modes, and static loading conditions simultaneously.