x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Axial Crushing of an Aluminum-CFRP Hybrid Component: FE-Modeling, Simulation and Experimental Validation

The crushing performance of aluminum-CFRP (Carbon Fiber-Reinforced Plastics) hybrid generic crash components under axial compression load is experimentally investigated. Aluminum crash components, having similar geometry, are also crushed and compared with the hybrid components. The performance of the hybrid components is found to be twice as much as that of the aluminum components in terms of peak force and specific energy absorption (SEA). Finite element simulations of the crush tests are carried out in LS-DYNA®. The extended 3-parameter Barlat model (MAT36E) is used to characterize the anisotropic elasto-plastic behavior of aluminum sheet. The CFRP laminate is characterized by an orthotropic linear elastic material model (MAT54) with a progressive failure criterion (Chang and Chang). The aluminum-CFRP interface is modeled using tied contact with cohesive mixed mode failure criterion to capture the delamination behavior. Good agreement is found between experiment and simulation in terms of Specific Energy Absorption (SEA) as well as deformation pattern.

application/pdf Hoque_AIT.pdf — 810.8 KB