x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Simulating the Induction Heating Behavior of CFRTPC Laminates

The objective of this work is to create an FEM-based model for the inductive heating of carbon fiber reinforced thermoplastic composite (CFRTPC) laminates. A macroscale simulation model was created using the multi-physics capabilities of LS-DYNA®. Material model parameters were largely determined by micromechanical considerations. In order to further increase the accuracy of the FEM model, dynamic differential calorimetry (DSC) measurements were also carried out to determine the temperature dependence of the heat capacity of the laminates investigated. The model was then validated for laminates reinforced by non-crimped fabrics (NCF) with fiber volume contents (FVC) of 32%, 47% and 60% via induction heating tests. In general, the heating experiments could be approximated well both qualitatively and quantitatively. Furthermore, analyses were carried out in order to investigate the influence of individual ply orientations in the laminate on one another as well as the influence of the layer thickness on the resulting heating behavior.