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Abstract

This  work  presents  a  multiscale  simulation  framework  that  will  be  used  for  the  simulation  and
experimental validation of eigenstresses in composite materials generated via laser-dispersion. These
materials are obtained by adding tungsten carbide particles into the melt pool of a base metal to
generate surface coatings. Such coatings are used to boost wear-resistance, more precisely to protect
metallic surfaces against abrasion, erosion or corrosion. The coating significantly extends the part's
lifetime due to the outstanding material characteristics of the locally produced metal matrix composite
(MMC).  Eigenstresses,  which are the residual stresses left  in  the MMC material  after the coating
process, shall be investigated and predicted within the framework of this project and their effect on the
lifetime shall be estimated.
 
Computational  homogenization  is  employed  to  predict  the  thermo-mechanical  response  of
heterogeneous structures. In such schemes, the constitutive response of every integration point in the
macro scale is obtained by solving a boundary value problem on a representative volume element
(RVE) with boundary conditions from the corresponding integration point. Direct numerical simulation
(DNS) of RVE response, which can be seen in FE2 context, is computationally demanding. In contrast,
reduced order models (ROM) and data-driven surrogate models provide an appealing and efficient
alternative to DNS. In this work, an interface to LS-DYNA is developed to allow for:
1 implementation possibilities of user-defined  material routines (UMATs) in Python and C++
2 easy integration of temperature-dependent thermo-mechanical material parameter in LS-DYNA 
3 direct integration of data-driven models and ROM written in Python and C++
4 the usage LS-DYNA or self-written software as the DNS solver to compute RVE responses
 
Simple examples and an open-source code are provided to allow a straightforward deployment of
UMATs and two-scale simulations in LS-DYNA.

1 Introduction

Composite materials  are widely used  due to their improved mechanical and thermal properties and
innovative manufacturing possibilities in comparison to their individual phases. However, processes
that  ensure  reliable  designs  such  as  finite  element  analysis  (FEA)  should  account  for  materials’
microstructural  characteristics  as  they  drive  the  overall  structural  response.  These  characteristics
include the phase volume fraction and the spatial orientation of the phases, to name but a few. In
order to account for the heterogeneity, the computational homogenization method (e.g., FE2 [1,2]) has
shown  an  accurate  prediction  of  the  actual  nonlinear  behavior  of  composites.  Nevertheless,  the
drawback of this technique is its computational cost driven by two nested high-fidelity models: micro
and macro ones, as depicted in Fig. 1. This means that the effective macro strain  is computed for
every  material  point,  or  integration  point  in  discrete  settings,  of  this  model  and  used  to  set  the
boundary conditions for the representative volume element (RVE) model which in turn updates the
effective stress  and the algorithmic stiffness . At this level, model order reduction techniques and
surrogate  models  can  be  introduced  to  decrease  the  computational  demands  for  solving  the
homogenization  problem,  resulting,  e.g.  in  the  FE2R method  [3]  or  in  hybrid  ROM+data-driven
surrogates [4].
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Fig 1. Illustration of the implementation of the FE2 framework

The objective of this work is to propose an efficient scheme and implementation to ease testing of
multiscale  models  within LS-DYNA.  An  overview of  computational  homogenization  is  provided  in
section  2. Then details on the implementation  into LS-DYNA are discussed in section  3.  A set of
practical examples is illustrated in section 4.

2 Computational homogenization

This study is confined to a first-order homogenisation of thermo-mechanical problems in an 
infinitesimal strain framework. This class of homogenisation techniques assume that the micro-
structural length scale  is separated from the structural (macro-structural) length scale , i.e. . 
The aforementioned assumption implies that the fluctuations of the macroscopic fields are negligible 
with respect to the RVE. The two scales are coupled via the scale transition relations

(Eq 2.1)

where the macroscopic fields are overlined and the volume averaging operator  is defined via

. (Eq 2.2)

Here  is the displacement field,  represents the outward unit normal and the traction vector is
. In the structural scale, balance of linear and angular momentum should hold

(Eq 2.3)

with  denoting the volumetric force density and ,  specifying the displacement and traction 
boundary conditions, respectively. The macroscopic stress  depends on the microscopic stress field

 through the averaging relation (2.2). The field  is the solution to the microscopic boundary value 
problem

. (Eq 2.4)

The boundary conditions of this microscopic boundary value problem are taken in accordance with the
Hill-Mandel condition [5]: the total mechanical power should be identical on both length scales, i.e.

. (Eq 2.5)

These conditions are, for instance, satisfied by periodic displacement fluctuations of the form

(Eq 2.6)

with  and the periodic fluctuation field , i.e. points  and on 
opposing faces of the RVE have the same displacement fluctuations. The quantity  is constant over 
the RVE and the symmetric gradient of  vanishes in average. Hence, by introducing strain 
fluctuations , the strain field can be additively split into an average strain  and the 
fluctuations  via
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(Eq 2.7)
without violating the boundary conditions.

The thermal problem is similar to the mechanical one but the solution variable is temperature  instead
of displacement  and consequently, the heat flux  which is linearly related to the temperature 
gradient  by Fourier’s law . Thermal conductivity is denoted by .With the 
introduction of temperature fluctuations , temperature gradient may be written as 

. (Eq 2.8)

If thermo-elastic coupling is not taken into account, the effective constitutive response is written as

. (Eq 2.9)

However, for coupled analysis, the effective stress response changes to

(Eq 2.10)

where  is the initial temperature and  is the effective thermal expansion coefficient. Further details 
on how to obtain effective thermo-elastic properties are provided in [6,7]. For completeness, the 
effective heat capacity is also obtained via (2.2). 

3 Implementation

This section includes an overview of  the provided extensions and  illustrates how the workflow is
realized.

In context of thermo-elastic homogenization in LS-DYNA, the following remarks were summarized:
- Temperature dependent material properties can be defined by specifying a minimum of two and a 

maximum of eight data points, i.e. material properties are defined in a tabulated format with 
maximum of eight data points.

- RVE mechanical response can be computed with the help of *RVE_ANALYSIS_FEM keyword but 
to the best of the authors knowledge, RVE thermal response is not realizable yet in LS-DYNA.

- There is no straightforward way to interact with machine learning models.

After an evaluation of the remarks above, an extension to LS-DYNA object version was proposed with
the following objectives:
- Implement temperature dependent material parameters as functions of temperature leading to 

accurate capture of these parameters without loss of accuracy due to discretization.
- Compute thermo-mechanical RVE response in LS-DYNA.
- Provide a user-friendly interface to link machine learning models to LS-DYNA.
- Tutorial oriented repository to allow for further extensions by the community.

The  proposed  extension  is  designed  to  be  flexible and  extendable.  Hence,  it  is  comprises  a
combination of Fortran, C++ and Python scripts. An overview of the workflow is provided below while
use cases and examples are presnted in the next section.

In order for interested readers to have a smooth start in using the provided code and extending it, all
manipulations of LS-DYNA object version files are stored as patch files. Hence, it is straightforward to
see which places have been edited and results can be replicated on different machines or different
operation systems even though the usage of different operation systems have not been tested in the
scope of this work. Note that it is expected that the user has access to LS-DYNA object version, i.e.
the version to which user material routines may be linked. More details of the code usage are provided
in the readme file and in the header of each file.

1.1 Usage of LS-DYNA to compute the effective thermo-mechanical RVE response

In periodic homogenization framework, the microscopic boundary value problem is solved for given
boundary conditions from the macroscopic scale as in (2.6). Then after obtaining the stess and heat
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flux fields, they are averaged via the discrete version of (2.2), i.e. by taking the corresponding discrete
values at integration point level and multiplying by respective integration weights.

The actual implementation is called from dyn21umat.f and included in rve_2d.f and rve_3d.f.
The  keyword  “*RVE_ANALYSIS_FEM”  from  [8]  was  used  in  the  input  file  to   to  apply  periodic
displacement boundary conditions  to the RVE. These boundary conditions are intrinsically realized
with the help of the multipoint constrained keyword “*CONSTRAINED_MULTIPLE_GLOBAL”. Note that
it is also possible to use “*INCLUDE_UNITCELL” to apply periodic boundary conditions.

Note that  to the best of the authors knowledge, periodic thermal fluctuation boundary conditions are
not realizable in LS-DYNA, yet. Hence, in  the  thermal simulation, zero temperature fluctuations are
assumed which is equivalent to a Voigt-like assumption for the thermal microscopic problem. This is
known to overestimate the actual conductivity and will be replaced by a computational homogenization
procedure incorporating periodic temperature fluctuations at a later stage.

1.2 Implementation of new user material subroutines

The native implmentation of user materials within LS-DYNA is usually realized in Fortran 77. However,
Python and C/C++ code is often easier to develop. This holds particularly true in the context of linking
external  tools  and  packages,  e.g.,  machine  learning  frameworks  like  Google’s  TensorFlow  or
Facebook’s pyTorch.

Python was chosen at first due to its code readability that can enhance code development cycle and
its wide usage for machine learning tasks. As a side outcome, C++ extension was developed due to
the fact that enriching Fortran with Python was achieved with the help of Python/C API.

Below are two examples/prototypes of how to call C++ from Fortran then how to call Python from C++.
For the sake of brevity, functions are presented in a general framework without any relation to FEM or
LS-DYNA. However, scripts that are actually called from LS-DYNA can be found in umat directory.

In  the  first  example,  a  C++  function  is  defined.  This  function  has  to  be  defined  with  a  linkage-
specification, extern "C", for example as in code block 1.

#include <iostream>

extern "C" {
void cpp_function_(const double* argument_1, double* argument_2, double& argument_3);
}

void cpp_function_(const double* argument_1, double* argument_2, double& argument_3)
{
    std::cout << "cpp_function was called" << std::endl;
}

Code block 1.

With extern "C", a function-name in C++ is given C linkage, i.e. there is no overloading and C++
compiler does not add argument/parameter type information to the name used for linkage. In other
words, function name is the only thing needed to link to such function. Then the fucntion is directly
callable from Fortran following code block 2.

call cpp_function(argument_1, argument_2, argument_3)

Code block 2.

Calling Python  from C++ is  a  more  challenging  task,  it  requires  the  usage of  Python/C  API. An
exemplary implementation of embedding Python in a C++ code can be realized via code block 3.

#include <iostream>
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#include <Python.h>

extern "C" {
void cpp_call_python_(const double* argument_1, double* argument_2, double& argument_3);
}

void cpp_call_python_(const double* argument_1, double* argument_2, double& argument_3)
{
    Py_Initialize();

    PyObject* py_module = PyImport_ImportModule("file_name");

    PyObject* py_function = PyObject_GetAttrString(py_module, "py_function");

    PyObject* output = PyObject_CallFunctionObjArgs(py_function,
                                                   PyFloat_FromDouble(argument_1[0]),
                                                   PyFloat_FromDouble(argument_2[0]),
                                                   PyFloat_FromDouble(argument_3), NULL);

    std::cout << "output #0 "<< PyFloat_AsDouble(PyList_GetItem(output,0)) << std::endl;
    std::cout << "output #1 "<< PyFloat_AsDouble(PyList_GetItem(output,1)) << std::endl;

    Py_Finalize();
}

Code block 3.

Recommended  compiling  flags  when  using  Python  3.7  and  earlier  are  obtained  via  calling
python3.X-config --cflags while  linking  flags  are  provided  via  python3.X-config --
ldflags,  where X specifies which Python release is used. In the presented case py_function is
assumed to be defined in file_name.py, for instance, as in code block 4.

def py_function(*args, **kwargs):
    print("py_function is being called")
    print("Arguments: ", args)
    print("Keyword arguments: ", kwargs)
    
    return [args[0] * args[1], args[2]]

Code block 4.

It is worth noting that calling C++ from Fortran causes only negligible overhead. The situation is quiet
different  for  Python  though:  The  call  to  Python  is  a  bit  slower  but  it  can  still  be  ideal  for  the
development process as there is, e.g., no need for multiple code compilation cycles each time a new
or alerted  constitutive model is investigated. Further, the code itself can be really sleek.

Mechanical and thermal material routines are visualized in Fig. 2 as a blackbox model.

© 2021 Copyright by DYNAmore GmbH



13th European LS-DYNA Conference 2021, Ulm, Germany

Fig 2. Illustration of how material routines are called.

Item  in  parentheses  ( )  in  Fig.  2  are  optional  and  dependent  on  specific  use  cases.  Thermal
expansion, for instance, is not a required output by LS-DYNA, instead it can be directly utilized in the
mechanical material routine.

The above-mentioned inputs and outputs may be extended but that requires editing the main calling
code in Fortran. 

4 Practical examples

In this section, a set of use cases are discussed to illustrate what can be achieved with the current
implementation. Corresponding files are included and each case is presented in a step by step fashion
to  allow for  reproducibility.  All  cases  are  stored  in  the  examples directory  and  each  include  a
run_example.sh file that has all necessary commands to run such an example.

4.1 Using LS-DYNA to compute RVE response

Relevant examples are found in examples/two_scale/2d_rve and 
examples/two_scale/3d_rve. Given files consist of a finite element mesh file called mesh.k and 
LS-DYNA input files input_rve.k and input.k. Periodic or uniform displacement boundary 
conditions defined in input_rve.k are applied/added to a newly generated mesh file called 
rve_mesh.k by calling lsdyna i=simple_block_mesh_1000el.k mcheck=y.

Thermal boundary conditions are defined in input.k as a function of spatial nodal location as in code
block 5.

*DEFINE_FUNCTION
1 $ function id
float f(float x, float y, float z, float vx, float vy, float vz, float time)
{
 float gradx, grady, gradz;
 gradx = 1.0; grady = 1.0; gradz = 1.0;
 return 273.0 + x*gradx + y*grady + z*gradz;
}

Code block 5.

Then thermo-elastic response is written to the terminal after calling lsdynaumat i=input.k.
Note that lsdynaumat command here, refers to the newly compiled version of LS-DYNA. Compilation
steps are include in the readme file.

For a chosen set of material parameters, boundary conditions and 2D mesh as in Fig. 3, the 
corresponding stress  distribution is depicted in Fig. 3.
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Fig 3. Exemplary 2D RVE and its corresponding response.

Assuming that an RVE has unit length, the user can easily modify its boundary conditions by altering
values at the end of rve_mesh.k file under *BOUNDARY_PRESCRIBED_MOTION_NODE card. Further,
this step can be automated as done in rve_change_pbc.sh.

Note that in case of thermoelasticity it is enough to load a 3D RVE in six orthogonal strain directions,
three  orthogonal  temperature  gradients  and  solve  one  eigenstress  problem  to  get  all  effective
properties  at  a  given  temperature  [7].  The  number  of  simulations  is  reduced  in  case  of  2D
microstructure to three mechanical simulations, two thermal ones and one eigenstress problem.

4.2 Analytical expressions for material properties

As a proof of concept case, temperature dependent material parameters are considered here. Given
scattered material paramaters over a wide temperature range it is possible to fit these parameters
using  a  polynomial  function with  low degree (one,  two or  three).  Then such polynomails  can be
automatically written as lambda functions, i.e. usually one liner small anonymous function that can
take any number of arguments but can only have one expression.

For example, heat capacity and elastic modulus of oxygen-free high conductivity (OFHC) copper are
illustrated, after the fitting process, in Fig. 4. 

Fig 4. Temperature dependent material parameters of OFHC.

As an output of the fitting procedure, the functions in code block 6 are defined and thier handles can
be directly passed to a user defined material routine.

heat_capacity_cu = lambda x: 3.162e+02 * x ** 0 + 3.178e-01 * x ** 1 - 3.497e-04 * x ** 2 + 1.663e-07 * x ** 3
elastic_modulus_cu = lambda x: 1.357e+02 * x ** 0 + 5.857e-03 * x ** 1 - 8.161e-05 * x ** 2

Code block 6.

In other words the implementation of a UMAT does not change when changing material parameters,
this is particularly useful for automation purposes or when fitting experemental data.
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Such  implementations  are  possible  in  Python  or  C++.  Hence,  relevant  examples  are  provied  in
examples/analytical_mat_parameter,  where  material  parameters  have  to  be  defined  for  a
macrostructure with two different material phases that is illustrated in Fig. 5. Analytical expressions for
material  parameters  are  already  defined  in  umat/umat.py and  umat/umat.cpp.  However,  a
compilation step is still needed to activate either the Python interface or the C++ one, this is done by
setting  python_interface or  cpp_interface to  .true. in  umat_elastic_44_14.F90 and
compiling  following  the  instructions  in  readme.  Under  sufficient  boundary  conditions,  a
thermomechanical response is visualized in Fig. 5.

Fig 5. Exemplary results of a two phase structure using UMAT.

4.3 Realization of two scale simulation scheme in LS-DYNA

This  last  showcase  illustrates  the  possibilities  of  incorporating  high-end  multiscale  methodologies
within commercial software.  In such scenario, academic codes can be used to feed ROM data and
commercial codes for the actual deployment  in a trial to  meet industry needs.  Here, an efficient in-
house  Fourier-Accelerated  Nodal  Solver  (FANS)  [10]  is  used  to  generate  effective  thermo-elastic
response of a 3D RVE. Even if the data was generated from any surrogate model, the way how the
code is used will not be altered.

In  the  example  in  examples/two_scale/homogeneous_single_track,  an  RVE  effective
response under different load temperatures is assumed to exist and stored in a tabulated format in an
HDF5 file. For the sake of brevity, linear interpolation is used to evaluate effective properties at current
temperature given the stored response at one higher and one lower temperatures.

The heterogeneous structure in Fig.  5 is replaced buy a homogeneous one as in Fig.  6 and the
corresponding user material input card is updated as in code block 7.

*MAT_THERMAL_USER_DEFINED
$#    tmid        ro        mt       lmc       nhv      aopt    iortho  ihve
            2       1.0        14          8        13       0.0          0          0
$#      p1        p2        p3        p4        p5        p6        p7        p8
         0.0       0.0       0.0       0.0       0.0       0.0       0.0          2

Code block 7.

Here material desity is given as 1.0 [-] because the model in rve_elastic.py does not return heat
capacity alone but multiplied by density and  p8=2 is set to match the implementation in  umat.py,
relevant part is included in code block 8.

class material_id(Enum):
    copper    = 0
    tungsten = 1
    rve          = 2

Code block 8.
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Fig 6. Replacement of heterogeneous structure by a homogeneous one.

Based on the provided input, it is possible to obtain the homogenized response of the structure in Fig.
5 as illustrated for the thermal case in Fig. 7. The choice of the RVE geometry is not discussed here
as it does not influence the implementation.

Fig 7. Homogenized response of two-phase structure.

5 Summary

An extension to  LS-DYNA object version  is proposed to allow the usage of LS-DYNA in two-scale
simulation scenarios. At the same time, direct usage of analytical expressions for the evaluation of
material parameters is realized in Python and C++. 

The user-friendly extension is designed to be flexible and extendable. Some of possible use case
include but not limited to:
- Reduced order model for FE2R simulations

- Use high-end multiscale methodologies within commercial software.
- Provide "best of two worlds" experience by  using academic codes for feeding the ROM and

commercial codes for the actual deployment.
- Machine-learned surrogates

These models can, for instance, replace the ROM ones by a plug & play fashion. Hence, various
models may be tested to choose an optimal one for a specific objective.

All extensions are provided with an automatic build scripts. Therefore, focus can be directed toward
the implementation of material routines in high-level programming language such as Python.

The source code is now available via GitHub [10].
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