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Abstract 
 

Reliable numerical simulation of failure is important for the design and planning of new solids 

and structures, as well as for the safety assessment of existing ones. In the past two decades, 

gradient and non-local models for regularizing loss of ellipticity due to material failure using 

non-standard finite element method and more recently the meshfree method have been the topic 

of considerable research. Alternatively, discontinuous partition of unity enrichments and 

meshfree visibility concepts were proposed and used in finite element method (also called 

extended finite element method - XFEM) and meshfree method to model cracks.  

  

Due to the fact that the description of crack plane in XFEM using level set method still presents 

several difficulties in the three-dimensional simulation of solids, the meshfree method using 

visibility concept is tested for the solid failure analysis of reinforced concrete structure under 

impact loading. The current method incorporates the discontinuous field into the generalized 

meshfree approximation [1] by the introduction of visibility approach [2]. To determine the 

onset of fracture and subsequently the crack propagation, a stress-based initial-rigid cohesive 

cracking model was developed for the brittle and semi-brittle materials. After the insertion of 

new crack, the state variables are interpolated and transferred to the new stress point using 

second-order meshfree approximation [3]. To integrate the discrete equations involving the 

crack plane, the strain smoothing algorithm developed in SCNI method [4] was adopted in this 

development. A typical reinforced concrete structure under impact loading failure involving 

multi-cracks is modeled using the developed method and results are presented.  

 

 

Generalized Meshfree Approximation  
 

The generalized meshfree (GMF) approximation method can be used to construct a convex, non-

convex, or combined convex and non-convex approximation for meshfree computation. The 

GMF approximation has one unique feature. That is it naturally bears the weak Kronecker-delta 

property at boundaries regardless of its convexity or non-convexity. This property makes the 

imposition of essential boundary conditions in meshfree methods easier. The first-order GMF 

approximation in one dimension is described as follows: 
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In the GMF approximation, the property of the partition of unity is automatically satisfied by the 

normalization in Eq. (1). The completion of the GMF approximation is achieved by finding   to 

satisfy Eq. (2). To determine   at any fixed x  in Eq. (1), a root-finding algorithm is required for 

the non-linear base functions. 

 

The spatial derivative of the GMF approximation is given by 
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By choosing appropriate basis functions in the GMF approximation, some well-known convex or 

non-convex approximations, such as Shephard, Moving-least-squared (MLS), Reproducing 

kernel (RK) and Maximum entropy (ME) approximations, can be recovered. When the basis 

function is non-positive such as polynomials, the convex approximation property and Kronecker-

delta property at the boundaries are lost and a boundary correction function [1] has to be 

introduced to achieve the local convexity at the boundary nodes. The MLS and RK 

approximations are the typical non-convex approximations.  

 

In the MLS or the RK approximation, polynomial basis functions are introduced to meet the 

polynomial reproducing conditions. As in the ME approximation, the employment of exponential 

basis function takes into account the exponential distribution of the probability at the node in the 

view point of the information theory. Therefore it yields a convexity in the approximation since 

the exponential function is non-negative. It is noted that other probability density function can 
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also be chosen as a basis function and different entropy measure can also be used to obtain the 

convex approximation. The enriched basis function and weight function play an important role in 

controlling the smoothness and convexity of the approximation. The coefficient   in Eq. (1) can 

be viewed as a corrected weight to impose polynomial reproducibility. 

 

Table 1 gives the typical basis functions used to generate the convex and non-convex GMF 

approximations. In this study, the GMF(tanh) approximation is adopted for the simulation. 

 

Table 1. Examples of basis functions in the GMF approximations 

 

Convexity Basis function Abbreviation Note 

Convex  

approximation 

xe  GMF(exp) 
ME Approximation 

(Shannon entropy) 

1+tanh(x)  GMF(tanh) 
 

New approximation 

-12
1+ tan (x)

π
 GMF(atan) New approximation 

1

-11-
1+ x





 
 
 

 

(Renyi basis function) 

GMF(Renyi) 

ME Approximation 

(Renyi entropy) 

 0.5 1.0   

Non-convex  

approximation 

MLS approximation 

( 2  ) 

1+ x  GMF(MLS) MLS approximation 

1+ x
3
 GMF(x

3
) New approximation 

e
x
(1+ x

3
) GMF(exp·x

3
) New approximation 

 

 

Review of K&C Concrete Model (*MAT_72） 
 

The Release III KCC model was made available in LS-DYNA in 2004. The model has been 

extensively verified in both dynamic and quasi – static load environments [5, 6, 7].  To verify the 

basic capabilities of the KCC model, several single element numerical results are included 

herein. 

Figure 1 shows the stress – strain relationship for a single element UUC test. It is seen that a 

yield point is reached first, then very limited hardening undergoes, and finally, strain softening 

phenomenon is observed. It should be pointed out that, in the Figure, positive volumetric strain 

corresponds to volume compaction and negative volumetric strain corresponds to volume 

expansion. As a consequence, it can be concluded that the shear dilation effect is captured by the 

material model properly, since the concrete is compacted early on and after it reaches its peak 

strength, the concrete is expanded.   
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Figure 1 Single element UUC test 

 

Figure 2 shows the stress – strain relationships for single element triaxial compression (TXC) 

tests, where solid line represents axial strain axial stress relationships, dotted lines represent 

lateral strain – axial stress relationships, and legend indicates confinement pressure.Several 

conclusions can be made from these tests. First, confinement effect is captured properly by the 

material model since concrete strength is observed much higher than its unconfined compressive 

strength (41.4 MPa).  Second, the brittle – ductile transition under confinements is modeled 

properly. It is seen that strain softening behavior occurs when confinement pressure is low, and 

the concrete behaves elastic – hardening plastically, just like metal, when confinement pressure 

is very high. 

 

Figure 2 Single element TXC tests 

 

Modified Cohesive Zone Model 
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In meshfree cohesive failure approach, a modified cohesive zone model [8] is utilized to describe 

the material failure of concrete in tension mode in addition to the concrete model described 

previously. The effective traction ( efsT
) and the effective crack opening displacement ( efs

) are 

defined as 

 2 2

2

1
efs n tT T T


  , and            (12) 

 2 2 2

efs n t                             (13) 

where the subscript n  and t  denote the normal and the tangential directions on the cracked 

surface ( c ) respectively as shown in Figure 3 and 0   is a parameter defined later.  

 

Figure 3 Cohesive zone model 

The normalized non-dimensional displacement jump (  ) and the critical displacement jump 

( c ) [9] are introduced as 
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where the subscript c  and f  are the abbreviations of critical and failure respectively and 0   

is a parameter defined later. The failure opening displacement nf
 and tf  are material constants, 

but the critical opening displacement nc
 and tc  are numerically obtained by the visibility 

criterion when the crack is initiated as described previously. The initially-rigid irreversible 

cohesive can be assumed as 

 
*

max

1
( )

1
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c

T T
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             (16) 

where maxT
 is the maximum tensile strength of a material and 

*

maxmax( , )   
 which describes 

the irreversibility of the cohesive law. Then, the failure criterion is defined as 
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 max( ) 0efsT T                (17) 

which is the traction-driven failure criterion. 

 Originally, the initially-rigid cohesive law was proposed with the interface elements in 

the FE framework. In the FE framework, the crack initiation and propagation are occurred at 

nodes on the boundaries of elements. Hence, the critical opening displacement is always zero. 

However, in the meshfree method, the visibility criterion produces the positive non-zero critical 

opening displacement when the crack is initiated. Therefore, after the crack is initiated, the 

initially-elastic irreversible cohesive law with the critical opening displacement is adopted for the 

softening stage. This is the combined initially-rigid and initially-elastic irreversible cohesive law 

or the hybrid irreversible cohesive law. In other word, the initially-rigid cohesive law is used for 

the crack initiation and then it is switched to the initially-elastic irreversible cohesive law until 

the crack is separated completely. The initially-elastic irreversible cohesive laws of the normal 

and the tangential tractions can be defined as 
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where 0   is a parameter defined later. 

 In the formulations above, there are three parameters,  ,   and  . The relationship 

among those parameters can be found. By inserting Eq. (18) and (19) into Eq. (16) at 
ct t , then 

Eq. (16) becomes 
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Obviously, the square root term in Eq. (20) should become c  and is equal to Eq. (15). Then, we 

obtain  
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By dividing Eq. (13) by nf , then Eq. (13) becomes 
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  , using Eq. (14) and Eq. (21), we have 
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Numerical Example 

 

 A reinforced concrete structure under impact loading is analyzed with using meshfree cohesive 

failure approach. As in figure 3(a) and (b), the impactor is modeled such that the mass and 

strength distribution in the impact direction are corresponded to that of the scaled aircraft model. 

The thickness of RC panel is 6 cm, and the outer layer of panel is fixed. Reinforcement ration is 

0.47% with D3 rebar. The concrete compressive strength is 31.4 N/mm^2. The common nodes 

are used to model the rebar coupled to the concrete. In case of cohesive failure, only mode I 

failure is considered. The maximum tensile strength maxT
 is taken to be 2.9 MPa and the critical 

displacement jump ( c ) is given by 0.01 mm in the analysis. 

 

The final shapes of concrete plate in failure are plotted in Figures 4, 5 and 6 for FEM, EFG and 

cohesive failure approach respectively. As shown in Figure 4 (a), the failure shape of FEM 

concrete plate is close to a rectangle which is not an ideal circular shape. This is because the 

FEM mesh in concrete plate is originally discretized as a structured mesh. As a result, the 

elements in FEM are eroded depending on the orientation of the mesh. Compared to the FEM 

result, the final failure shape in EFG result using generalized meshfree approximation is closer to 

the ideal circular shape. Since EFG concrete plate requires less energy to create the material 

failure in circular shape, the residual velocity is higher than that in FEM method as shown in 

Table II. Both FEM and EFG with erosion approach generate similar amount of erosion in 

impactor as depict in Figure 3 (b) and 4 (b). The size of impactor radius in final shape is clearly 

smaller than the original radius due the material erosion in impactor. On the other hand, the 

impactor in meshfree cohesive failure approach retains the same size of radius during the 

penetration and creates a hole in concrete plate larger than the erosion approach. Because of that, 

the meshfree cohesive failure approach presents less residual speed than two erosion approaches 

which is closer to the reference solution in this study.      

                

(a)                                                              (b) 

Figure 3. (a) Impact model. (b) Upper view of the model. 
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                               (a)                                                                (b) 

 

Figure 4. FEM with erosion: (a) Final failure shape of concrete. (b) Failure shape with 

impactor 

 

                           

(a)                                                               (b) 

Figure 5. EFG with erosion: (a) Final failure shape of concrete. (b) Failure shape with 

impactor. 

                           

(a)                                                                  (b) 

 

Figure 6. Cohesive EFG: (a) Final failure shape of concrete. (b) Failure shape with impactor. 
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Table II. Residual velocity of impactor 

 FEM + erosion EFG + erosion Cohesive EFG 

velocity 103.5 112.4 94.5 

Reference 80 (m/s)   

 

 

Conclusions 

 

A simulation of reinforced concrete plate under impact loading using the meshfree cohesive 

failure approach is presented. The result is compared with two erosion approaches using FEM 

and EFG methods. Our numerical study reveals that FEM result is sensitive to the mesh 

orientation in which the final failure shape created by the impactor is depending on the generated 

mesh in the original model. In comparison to the FEM, two meshfree methods produce a failure 

shape in concrete plate that is more close to the ideal circular shape. The meshfree cohesive 

failure approach presents the lower residual speed and create large penetration hole comparing to 

the erosion approach. Although the meshfree cohesive failure approach utilizes the cohesive 

model to simulate the crack initiation and propagation in concrete material, it still relies on an 

erosion technique to handle the self-contact during the penetration. A study using cohesive 

meshfree-enriched finite element method [10] that incorporated tied node approach will be 

considered for this purpose in the next research phase.        
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