Recent Developments and Roadmap Part 4: Electromagnetics

12th International LS-DYNA User's Conference June 5, 2012

Outline

- Introduction
- Recent developments

LS-PrePost	Mr. Philip Ho	
Dummies	Dr. Christoph Maurath	
Incompressible CFD	Dr. Facundo Del Pin	
Electromagnetics	Dr. Pierre L'Eplattenier	
ALE, DEM, SPH, Particle	Dr. Jason Wang	

• Conclusions

Electromagnetism Dr. Pierre L'Eplattenier

Presentation of the Physics

Solver Coupling Needed

Coupling with other LS-DYNA Solvers

Scope of the new 980 solvers : to be coupled with LS-DYNA solvers in order to solve complex multi-physics problems

Electromagnetics for Magnetic Metal Forming

Al sheet forming on conical die : In collaboration with: M. Worswick and J. Imbert University of Waterloo, Ontario, Canada

Electromagnetics for Magnetic Metal Forming

Electromagnetics for Magnetic Metal Forming

Simulation of a steel tube-shaft joint for Automotive power train component In collaboration with: Fraunhofer Institute for Machine Tools and Forming Technology IW Chemnitz, Dipl.-Ing. Christian Scheffler Poynting GmbH, Dortmund, Dr.-Ing. Charlotte Beerwald

Electromagnetics for Inductive Heating

Heating of a steel plate by induction In collaboration with: M. Duhovic, Institut für Verbundwerkstoffe, Kaiserslautern, Germany

Electromagnetics for High Pressure Generation

Free surface velocity vs time

Electromagnetics for Railgun Simulations

Other Possible Applications

Magnetic Metal Welding in collaboration with M. Worswick and J. Imbert, University of Waterloo, Canada

Ring expansions experiments. Various Collaborations

- G. Daehn, Ohio State University.
- H. Kim, Edison Welding Institute, USA.

• D. Chernikov, Samara State Aerospace University, Russia.

> And even Levitating objects

max displacement factor=2

Advancement Status

- All EM solvers work on solid elements (hexahedral, tetrahedral, wedges) for conductors.
- Shells can be used for insulator materials.
- Serial and MPP versions available.
- 2D axi-symmetric available.
- The EM fields as well as EM force and Joule heating can be visualized in LS-PREPOST :
 - Fringe components
 - Vector fields
 - Element histories

Plan for Future

Introduction of Magnetic materials.

Further optimization of the FEM / BEM calculations.

Continue the validation process (T.E.A.M. problems).

Wishes from users. Please let us know !

Thank you for your Attention

LS-DYNA 980 Induction Heating Solver Time = 0	Fringe Levels
Contours of Temperature	4.000e+02
min=25, at node# 369761 max=25, at node# 369761	3.812e+02
	3.625e+02
	3.438e+02
	3.250e+02
Courtesy IVW GmbH	3.062e+02
	2.875e+02
	2.688e+02
	2.500e+02
	2.312e+02
	2.125e+02
	1.938e+02
	1.750e+02
	1.562e+02
	1.375e+02
	1.188e+02
	1.000e+02
	8.125e+01
	6.250e+01
	4.375e+01
	2.500e+01
7	
y Jx	

Video: courtesy of M. Duhovic, Institut für Verbundwerkstoffe, Kaiserslautern, Germany

Thank You !