x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

An Efficient Modeling Procedure for Simulation of Dynamics of Adhesively Bonded Joints

The present study is aimed at developing a new computationally efficient modeling procedure that predicts well the nonlinear mechanical behavior of adhesively bonded joints. The approach is thought to be particularly beneficial for computationally intensive vehicle crash simulations. Two other conventional modeling approaches are considered, that is, accounting for adhesive layer between shell-based substrates/flanges with monolithic solid elements, and defining a tied contact with failure condition in lieu of the solid elements. The approach presented here and not previously reported in the literature is an enhancement of the latter technique with equivalent properties being assigned to the substrates in the overlap segment of a joint model. A semi-analytical procedure is outlined in detail for arriving at the equivalent properties of substrates by accounting for shear properties of an epoxy adhesive which is geometrically not represented in the model. It is shown that the effect of strain rate on adhesive behavior can be elegantly incorporated in the proposed equivalent property-based approach via Material Type 24 in LS-DYNA for intended applications of dynamics such as vehicle crash safety assessment. The computational efficiency and accuracy of the present approach are established by comparing results yielded by it against experimental data and detailed shell-solid modeling technique.