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Abstract 
 
The Mooney-Rivlin constitutive equation for rubber is  

 

   33 2211  ICICW  

 

where material constants 1C  and 2C  must be determined through tests. The constant 1C  can be determined by 

uniaxial tension or compression tests; however, 2C cannot be determined accurately by uniaxial tension or 

compression tests.  In order to determine 2C , biaxial tests must be performed.  A biaxial test, inflation of a circular 

membrane, is presented in detail here for determining both 1C  and 2C . 

 

 

Introduction 

 
For Mooney-Rivlin materials the strain-energy density equation is: 

 

         3333 2112211  IICICICW       (1) 

 

where 1C  and 2C  are material constants and 12 /CC .  The strain invariants 1I  and 2I  are 

written in terms of the principal stretch ratios 1 , 2  and 3  
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An incompressibility condition is assumed in the Mooney-Rivlin material constitutive equation 

so that  

  

 1321            (3) 

 

For uniaxial tension or compression, the stress (force per unit undeformed area)  is related to 

the uniaxial stretch ratio  
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The dimensionless uniaxial stress 
1C


for various values of   vs. uniaxial stretch ratio   is 

shown in Figure 1.   

 

 

 

 

 
 

Figure 1, Uniaxial stress-strain curves 

 

 

For homogenous biaxial tension or compression, 

 

   21 .              (5) 

 

The stress (force per unit undeformed area)  is then related to the stretch ratio  
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The dimensionless homogenous biaxial stress 
1C


for various   vs. biaxial stretch ratio   is 

shown in Figure 2. 

 

 

 

 
  

Figure 2, Homogenous biaxial stress-strain curves 

 

 

 

From Figures 1 and 2, it is clear that uniaxial tests cannot be used to determine  , and biaxial 

tests must be performed.  A biaxial test, inflating of a plane circular membrane, is presented here. 
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A Biaxial Test 
 

In the experiment a flat circular membrane of rubber was clamped between two plates as shown 

in Figure 3. The membrane is inflated by air or liquid from a reservoir at a constant temperature.  

The height of the deformed membrane at the pole is measured by a LVDT or a laser beam.  The 

pressure is measured with a pressure transducer.  A data acquisition system and a computer 

gather the data from the LVDT and pressure transducer and are shown in Figure 4. 

 

The pressure-height relationship is measured.  During loading, at the pole, the deformation is in a 

uniform biaxial stress state. 

 

 

 

 
 

 

Figure 3, The apparatus 
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Figure 4, Laboratory set-up for the biaxial test 

 

Approximate Solution for Inflating a Circular Membrane 
 

Numerical solution for studying the inflation of a thin circular membrane has been obtained by 

Yang and Feng [1] and Feng [2].  However, using the numerical method for determining the 

material constants will be cumbersome.  Here we used the approximate solution of inflating 

pressure and deformation at the pole, by Christensen and Feng [3], to determine the material 

constants 1C  and  .  The result of the approximate solution by Christensen and Feng [3] is 

outlined here.  The approximate relationship between the inflating pressure ( P ) and the 

deformation at the pole (  ) is 
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The relationship between  and  is 
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where R  is the initial radius of the circular membrane and H  is the initial thickness of the 

circular membrane. The dimensionless pressure ( P
~

) and the dimensionless displacement at the 

pole ( )
~
  are 
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When 1
~
 , the ()sin 1  takes the value in the first quadrant.  When 1

~
 , the ()sin 1  takes the 

value in the second quadrant.  The approximate solution obtained from the above equation, the 

exact numerical solution by Feng [2], and the test data for inflating a circular thin membrane are 

shown in Figure 6 for a Mooney material with 02.0 .   

 

 The approximate solution is very good. 

 

   
 

Figure 5, The approximate solution, exact solution and test data for an inflated membrane. 

 



12
th

 International LS-DYNA
®
 Users Conference Constitutive Modeling(1) 

 

 7 

Determination of 1C  and 2C  

 

The approximate solutions for an inflated membrane with various  are shown in Figure 6.  

From the inflating pressure–displacement at the pole test curve, we can use the shape to 

determine   and the dimensionless pressure to determine 1C .  With  and 1C , 2C is determined.  

One may also write a simple computer program to use the least square fit to determine these two 

constants. 

 

 

 
 

 

Figure 6, The dimensionless inflation pressure and the dimensionless displacement at the pole for 

the inflation of an initial flat circular membrane of various  . 

 

In order to determine   accurately, the membrane should be inflated such that 
~

 is greater than 

1.5.   
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A typical deformed membrane during a test is shown in Figure 7. The initial specimen geometry 

is given by 0.1R inch, 01.0H  inches.  The rate of data acquisition is one datum per second 

and the total test takes about 3 minutes. The pressure-deformation at the pole curve is shown in 

Figure 8.  It is seen that the theoretical from provides a very satisfactory model of the data.  It has 

the material constant values of 721 C psi and 105.0 ; hence, 721 C psi and 56.72 C psi. 

 

 
 

Figure 7, A membrane during test 

 

 
 

 

Figure 8, Test data and analysis  



12
th

 International LS-DYNA
®
 Users Conference Constitutive Modeling(1) 

 

 9 

 

Remarks 
It is noted that the same test apparatus can be used to determine material constants based on 

other constitutive equations.  The test apparatus can also be used to provide test data for 

determining the material functions for viscoelastic behavior [4], the Mulllins effect [5] and the 

aging of elastomers [6]. 
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