12" International LS-DYNA® Users Conference Computing Technologies(3)

Matching LS-DYNA Explicit, Implicit, Hybrid
technologies with SGI architectures
Olivier Schreiber®, Tony DeVarco*, Scott Shaw* and Suri Balaf
*SGI, 7LSTC

Abstract
LSTC has now integrated Explicit, Implicit solver technologies into a single hybrid code base
allowing seamless switching from large time steps transient dynamics to linear statics and
normal modes analysis. There are multiple computer architectures available from SGI to run LS-
DYNA. They can all run LSTC solvers using Shared Memory Parallelism (SMP), Distributed
Memory Parallelism (DMP) and their combination (Hybrid Mode) as supported by LS-DYNA.
Because computer resources requirements are different for Explicit and Implicit solvers, this
paper will study how advanced SGI computer systems, ranging from multi-node Distributed
Memory Processor clusters to Shared Memory Processor servers address the computer
resources required and what tradeoffs are involved. The paper will also outline the
specifications of running LS-DYNA jobs on Cyclone, SGI's HPC cloud computing infrastructure
using d3View. d3View is a simulation data management and visualization software that extends
the use of HPC by performing simulation data extraction and analysis on the compute nodes.

Introduction
The subject of this paper is to evaluate the use of SGI® ICE and SGI ®UV architectures using
the most recent technologies for Shared Memory Parallel (SMP), Distributed Memory Parallel
(DMP) and their combination (hybrid mode) LS-DYNA implicit analyses. The strategies
employed by LS-DYNA and the practical importance of such analyses are described in
Reference [1] and [2]. Integrated within its explicit framework, LS-DYNA’s implicit technology
provides the capability to perform transient analyses with larger time steps as well as usual linear
statics and modal analyses. How to best use SGI hardware is described in Reference [3].

1 Benchmark Systems
Various systems comprised in SGI product line and available through SGI Cyclone™ , HPC
on-demand Cloud Computing were used to run the benchmarks.

1.1 SGI ICE cluster

Highly scalable, diskless, integrated cable-free infiniband interconnect rack mounted multi-node
system the SGI® ICE integrated blade cluster was designed for today's data intensive problems.
This innovative new platform from SGI raises the efficiency bar, easily scaling to meet virtually
any processing requirements without compromising ease of use, manageability or
price/performance. SGI Altix ICE delivers unsurpassed customer value, with breakthrough
density, efficiency, reliability and manageability (Figure 1).

* Intel Xeon 5500 2.93GHz quad-core or 5600 3.46GHz six-core
* Two single-port ConnectX-2 IB HCA

» 12 DDR3 1066 MHz or 1333 MHz ECC DIMM slots per blade
* SGI Tempo management tools™

Computing Technologies(3) 12" International LS-DYNA® Users Conference

» SUSE Linux Enterprise Server 11 SP2, SGI ProPack 6SP3 for Linux® and Altair® PBSpro
workload manager.

e
"

Figure 1: SGI Altix ICE cluster and IRU

1.2 SGI® UV 10, UV 100, UV 1000 (SMP)
Altix® UV scales to extraordinary levels-up to 256 sockets (2,048 cores, 4096 threads) with
architectural support to 262,144 cores (32,768 sockets). Support for up to 16 TB of global shared
memory in a single system image, enables Altix® UV to remain highly efficient at scale for
applications ranging from in-memory databases, to a diverse set of data and compute-intensive
HPC applications. With this platform, it is simpler for the user to access huge resources for
programming via a familiar OS, without the need for rewriting their software to include complex
communication algorithms. (Figure 2)

Figure 2: SGI UV 10, UV 100, UV 1000 SMP

* 6-core Intel Xeon 7542 2.66GHz
* NUMAIiInk R 5
» SUSE Linux Enterprise Server 11 SP2, SGI ProPack 6SP3 for Linux®

1.3 Access to benchmark systems
SGI offers Cyclone, HPC on-demand computing resources of all SGI advanced architectures
aforementioned (Figure 3). There are two service models in Cyclone. Software as a Service

12" International LS-DYNA® Users Conference Computing Technologies(3)

(SaaS) and Infrastructure as a Service (laaS) (Figure 4). With SaaS, Cyclone customers can
reduce time to results by accessing leading-edge open source applications and best-of- breed
commercial software platforms from top Independent Software Vendors (ISV’s) like LSTC.

Cyclone Customer
Secure Login <=

SGi Firewall ven Results on Demand™
SGL Flrewat S

[SESRSRSRSSSS TS I S SIS S S S S S S LS S S S S S = ——_]

v

~
Data/Application Licence Loaded

; Management Server for
.] Pre & Post Processing
and Job Scheduling

SG| Servers

I
4

_—

Systems Workload Storage

Figure 3: SGI Cyclone — HPC on-demand Cloud Computing

Software as Infrastructure as
a Service (SaaS) a Service (laaS)

Use SGl-provided Use customer-provided
applications over applications on
a network SGl infrastructure

Systems Managemen
Operating System

on
o r

|

Figure 4: SGI Cyclone Services
The physical elements of Cyclone feature:

* Pre-configured, pre-certified applications and tools
» High speed Scale-Up and Scale-Out platforms

» High speed processors

* High speed networking (NUMAIlink, InfiniBand)

* Non-virtualized environments

» Dedicated management node for security

e SSH or d3View web portal access

» From scratch storage to long-term storage

 Data exchange service

1.4 d3View

d3VIEW is a web based software that provides users with a single unified interface for
submitting, monitoring and visualizing LS-DYNA simulation results. Coupled with its advanced

Computing Technologies(3) 12" International LS-DYNA® Users Conference

visualization features and multiple-simulation comparison capabilities, d3VIEW is the industry
leader in providing a platform for simulation engineers in the area of simulation data
visualization and collaboration.

d3VIEW has been integrated with SGI Cyclone clusters to provide users an instant access for
running complex simulations. Jobs can be submitted and monitored from any internet-enabled
device. d3VIEW also provides a “Job Preview” function that allows users to get quick peek at
the ongoing simulations in real-time. Users can also send signals to LS-DYNA or alter job
properties while the job is running on Cyclone.

Once the job completes, d3VIEW processes the results which otherwise is done manually to
present the user an “overview” of the simulation that emphases simulation quality and structural
performance. Depending on the result overview, users can then make quick “size” changes and
resubmit the job or download the data set to perform additional calculations.

2 LS-DYNA

2.1 Version Used

LS-DYNA/MPP 15971 R5.1.1 hybrid for Message Passing Interface R3.2.1 is faster than
R5.1.1 by 25% (neon) to 35% (car2car) because at R4.2.1, coordinate array went to double
precision for slow motion simulation.

2.2 Parallel Processing Capabilities of LS-DYNA

2.2.1 Nomenclature

A node is synonymous to one host or one blade or one chassis, identified by one MAC address
and one IP address. It comprises two sockets (most common) or more on which are plugged in a
processor with four (quad-core), six (hexa-core), eight or twelve cores on each.

2.2.2 Background
Parallelism in scientific/technical computing exist in two paradigms implemented separately or
recently combined in the same so-called Hybrid code:

« Shared Memory Parallelism (SMP) appeared in the ’80s around DO loop processing or
subroutine spawning and consolidated on the OpenMP (Open Multi-Processing) Ap-
plication Programming Interface and Pthreads standard. Parallel efficiency is affected
by the ratio of arithmetic operations versus data access or DO loop granularity.

* Distributed Memory Parallelism (DMP) appeared in the late *90’s around physical or

mathematical domain decomposition and consolidated on the MPI Application Pro-
gramming Interface. Parallel efficiency is affected by the boundaries created by the
partitioning.

These two paradigms can map themselves on two different system hardware levels:
 Shared Memory systems or single nodes with memory shared by all cores.
e Cluster Nodes with their own local memory, i.e. Distributed Memory systems.

Shared Memory Parallelism cannot span cluster nodes either communication or memory-
wise. On the other hand, Distributed Memory Parallelism can be used within a Shared
Memory system. Since DMP is of a coarser granularity than SMP, it is preferable, when

12" International LS-DYNA® Users Conference Computing Technologies(3)

possible to run DMP within Shared Memory Systems.

3 Benchmarks Description

The benchmarks used are the three TopCrunch (http:www.topcrunch.org) benchmark datasets.
3.1 Neon Refined Revised

The benchmark consists of a frontal crash with initial speed at 31.5 miles/hour with a total model
size of 535k elements, 532,077 shell elements, 73 beam elements, 2,920 solid elements, 2 contact
interfaces, 324 materials, and a simulation time of 30 ms (29,977 cycles) Figure 5). The vehicle
model was created by National Crash Analysis Center (NCAC) at George Washington
University (Publicly available vehicle crash analysis model based on 1996 Plymouth Neon). The
dataset file causes LS-DYNA to write 68,493,312 Bytes d3plot and 50,933,760 Bytes d3plot01
files at 8 time steps from start to end point (114MB).

Figure 5: Neon Refined Revised
3.2 3 Vehicle Collision
The benchmark consists of a van crashing into the rear of a compact car, which, in turn, crashes
into a midsize car with a total model size of 794,780 elements, 785,022 shell elements, 116 beam
elements, 9,642 solid elements, 6 contact interfaces, 1,052 materials, and a simulation time of
150 ms (149,881 cycles) (Figure 6). The vehicle models created by National Crash Analysis
Center (NCAC) at George Washington University, and assembled into the input file by Mike
Berger, consultant to LSTC. The dataset file causes LS-DYNA to write 65,853,440 Bytes d3plot
and 33,341,440 Bytes d3plot[01-19] files at 20 time steps from start to end point (667MB).

According to LSTC, the 3cars model is very difficult to scale well: most of the contact work is in
two specific areas of the model, and it is hard, if not impossible, to evenly spread that work out
across a large number of processes. Particularly as the”active” part of the contact (which part is
crushing the most) changes with time, so the computational load of each process will change
with time.

Figure 6: Vehicle Collision

3.3 car2car

The benchmark consists of an angled 2 vehicle collision (figure 7). The vehicle models are based
on NCAC minivan model, created by Dr. Makino and Supplied by Dr. Tsay, LSTC, on Feb. 13,
2006. The termination time was modified per John Hallquist to .120 on March 7, 2006. The

Computing Technologies(3) 12" International LS-DYNA® Users Conference

dataset causes LS-DYNA to write 201,854,976 Bytes d3plot and 101,996,544 Bytes d3plot[01-
25] files at 26 time steps from start to end point (2624MB).

Figure 7: car2car

4 Effect of processor frequency

Elapsed time is not inversely proportional to CPU frequency as Figure 8 illustrates, for a serial
run. LS-DYNA'’s explicit computations are BLAS 1, i.e. vector-vector dominated. In a serial
run, similarly to STREAM benchmark, there is one core processing data at a rate limited by the
bandwidth of the channel of the first memory subsystem (cache) with a slower frequency than
the core frequency, causing performance to be less than proportional to core frequency.

The fully subscribed case of 12 MPI processes on the 12 physical cores available (Figure 9)
causes the performance increase due to CPU frequency to be even less than for the serial run
because the memory bandwidth becomes another limiting factor. Specifically, aggregate (full-
node) bandwidth is not necessarily equal to the serial bandwidth multiplied by the number of
physical cores.

When 8 nodes are used (Figure 10) sensitivity to CPU frequency is higher because although all
cores are utilized, bandwidth requirements are relieved by the decomposition into smaller
domains so each core needs to stream less data. By the same rationale neon_refined revised is
more sensitive to CPU frequency than the more bandwidth-sensitive 3cars and car2car datasets.

|Single Process 1/Ratios Elapsed seco Elapsed seconds
CPU Mhz Ideal Ratio* neon_» 3cars Fcar2carrneon_t 3Icars car2car elapsed seconds
3,467 1.30 1.20 1.21 1.23 4,594 65,154 627,076
3,333 1.25 1.16 1.16 1.19 4,698 67,983 646,344
3,200 1.20 1.13 1.13 1.16 4,782 69,536 666,734
32,067 1.15 1.10 1.10 1.12 4,950 71,757 690,055
2,933 1.10 1.06 1.07 1.08 5,107 73,693 714,558
2,800 1.05 1.032 1.03 1.04 5,289 76,258 741,287
2,667 1.00 1.00 1.00 1.00 5,431 78,746 771,960

M ldeal Ratios B neon_refined_revised 1/Ratios Times ' Jcars 1/Ratios Times B carZcar 1/Ratios Times

140

e

=]

120
10
[LE:]
06

3 AGT 3333 F 200 3067 2933 2800 2 66T

=]

=]

o4
o2

-]

Figure 8: Ideal performance gains versus actual for single process LS-DY NA explicit runs

12" International LS-DYNA® Users Conference Computing Technologies(3)

Single Node 1/Ratios Elapsed seconds Elapsed seconds
CPU Mhz Ideal Ratr neon_refr 3cars 1/P car2car ¥ neon_refr 3cars car2car elapsed seconds
3,467 1.30 1.13 1.09 1.10 569 8,110 78,843
3,333 1.25 1.11 1.08 1.09 578 8,223 79,591
3,200 1.20 1.09 1.06 1.07 589 8,334 80,608
3,067 1.15 1.08 1.05 1.06 599 8,448 81,684
2,933 1.10 1.04 1.04 1.04 619 8,517 82,850
2,800 1.05 1.03 1.02 1.03 626 8,664 84,379
2,667 1.00 1.00 1.00 1.00 644 8,842 86,505

M Ideal Ratios Mneon_refined_revised 1/Ratios Thtistitlz ' 3cars 1/Ratios Times M car2car 1/Ratios Times
140

120

1.0
0.8
0.6
04
02
0.00
3467 3333 3.200 3,067 2933 2,800 2667

Figure 9: Ideal performance gains versus actual for 12 MPI processes LS-DYNA explicit runs

8 Nodes 1/Ratios Elapsed seconds Elapsed seconds
CPU Mhz Ideal Rat neon_refr 3cars 1/P car2car » neon_refr3cars car2car elapsed seconds
3,467 1.30 1.18 1.13 1.10 113 1,326 78,843
3,333 1.25 1.14 1.10 1.09 117 1,355 79,541
3,200 1.20 1.12 1.09 1.07 119 1,377 80,608
3,067 1.15 1.09 1.06 1.06 122 1,408 81,684
2,933 1.10 1.06 1.05 1.04 125 1,428 82,850
2,800 1.05 1.03 1.03 1.03 129 1,459 84,379
2,667 1.00 1.00 1.00 1.00 133 1,496 86,505

Wldeal Ratios M neon_refined_revised 1/Ratios Thtbsfitlz 3cars 1/Ratios Times M car2car 1/Ratios Times
140

120

1
0
0
0.00
3467 338 3200 3,067 2933 2,800 2 667

Figure 10: Ideal performance gains versus actual for 96 MPI processes LS-DYNA explicit runs

=
=

=2
=

=2}
=

=
=
=

=
]
=

Computing Technologies(3) 12" International LS-DYNA® Users Conference

5 Effect of topology

Interconnect influence on synthetic and application benchmarks have been addressed
comprehensively, Figure 11 illustrates that for the 3cars benchmark, the effect of standard,
enhanced hypercube, ‘all to all’, ‘fat tree’ on one or two planes is below seven percent.

3 Cars LS-Dyna explicit Single Precision 971R3.2.1

12

08 m Standard Hypercube 1 plane
OEnhanced Hypercube 1 plane
EAll to All 1 plane

06 COFatTree
M Standard Hypercube 2 planes
HEEnhanced Hypercube 2 planes

B All to All 2 planes
0.4

02

Elapsed times in seconds (lower is better)

16 32 64 128

Number of dual WSM sockets 12-core nodes

Figurell: Topofogy LS-DYNA

6 Effect of hybrid parallelism

6.1 MPI tasks and OpenMP thread allocation across nodes and cores

For LS-DYNA, the deployment of processes, threads and associated memory is achieved with

the following keywords in execution command:

« -np: Total number of MPI processes used in a Distributed Memory Parallel job.

 ncpu: number of SMP OpenMP threads

« memory: Size in words of allocated RAM for each MPI process. A word will be 4 and 8 bytes
long for single or double precision executables, respectively.

An MPI library capability to bind an MPI rank to a processor core is key to control performance

because of the multiple node/socket/core environments. From [reference 5], ‘3.1.2 Computation

cost-effects of CPU affinity and core placement [...]HP-MPI currently provides CPU-affinity and

core-placement capabilities to bind an MPI rank to a core in the processor from which the MPI

rank is issued. Children threads, including SMP threads, can also be bound to a core in the same

processor, but not to a different processor; additionally, core placement for SMP threads is by

system default and cannot be explicitly controlled by users.[...]’. In contrast, MPT, through the

omplace command uniquely provides convenient placement of Hybrid MPI processes/OpenMP

threads and Pthreads within each node. This MPI library is linklessly available through the

PerfBoost facility bundled with SGI ProPack. PerfBoost provides a Platform-MPI, IntelMPI,

OpenMPI, HP-MPI ABI-compatible interface to SGI MPT MPI.

12" International LS-DYNA® Users Conference Computing Technologies(3)

6.2 Comparison MPI only, Hybrid and SMP only

System # Nodes # Cores/Node Total # Cores #MPI processes #Threads/Process Total # threads neort 3cars car2car
ICEB400 X5690 @ 3.47Ghz 1 12 12 12 1 12 766 10223 107985 MPI mode 1211
ICEB400 X5690 @ 3.47Ghz 1 12 12 6 2 12 836 12649 111416 Hybrid mode 62
ICEB400 X5690 @ 3.47Ghz 1 12 12 3 i 12 1056 17653 113066 Hybrid mode 3/4
ICEB400 X5690 @ 3.47Ghz 1 12 12 2 6 12 1120 20397 110528 Hybrid mode 2/6
ICE8400 X5690 @ 3.47Ghz 1 12 12 1 12 12 1993 40822 162424 SMP mode 1112
ICE8400 X5690 @ 3.47Ghz 1 12 12 1 12 12 1285 18700 165820 SMP.only executable 1/12
ICE8400 X5690 @ 3.47Ghz] 12 I [1 12 117 2112 20180 MPI mode 721
ICE8400 X5690 @ 3.47Ghz] 12 [t 36 2 72 189 2211 21307 Hybrid mode 3612
ICE8400 X5690 @ 3.47Ghz] 12 [u 3 72 201 2488 20884 Hybrid mode 2413
ICE8400 X5690 @ 3.47Ghz] 12 [18 1 72 226 3074 22336 Hybrid mode 18/4
ICE8400 X5690 @ 3.47Ghz] 12 I 12] 72 234 3450 22729 Hybrid mode 12/6
ICE8400 X5690 @ 3.47Ghz] 12 I 9 L] 72 899 11423 35907 Hybrid mode 9/8
ICE8400 X5690 @ 3.47Ghz] 12 I] 12 72 M6 7243 27798 Hybrid mode 6/12
neon refined revised E3cars Bcar2car neon_refined_revised B3cars Mcar2car
1000000 100000
100000 10000
10000
1000
1000
100
100
1 1
Hybrid mode 62 Hybrid mode 26 SMP-only executable Hybrid mode 362 Hybrid mode 1814 Hybrid mode 38
WP mode 1211 Hybrid mode 34 SMP mode 1112 MPI mode 72/1 Hybrid mode 243 Hybrid mode 126 Hybrid mode 612

Figure 12: SMP vs. DMP vs. Hybrid

The different cases involving DMP, SMP and Hybrid modes have been organized in the
following progression for the case of an ICE 8400 Xeon 5690 cluster single node and six-node
system: (SMP term is used for both computation mode and system).
» MPI mode (BLUE). This is the case where only MPI is used on all cores available.
The command typically used would look like:
mpirun -np Max#Cores lsdynaHybridExecutable inputFile ncpu=1l
« Increasing degrees of Hybrid mode (GREEN). This are the cases where combinations
of MPI processes and threads are used. The command typically used would look like:
mpirun -np decreasingCores lsdynaHybridExecutable inputFile
ncpu=increasingCores
As shown in the Figure 12, the arguments for -np and ncpu are arranged so that the total number
of threads fully uses all cores available.
» SMP mode with Hybrid executable (LIGHT YELLOW). This is the case where only
thread parallelism is used on all cores available using the same executable. The command
typically used would look like:

mpirun -np 1 lsdynaHybridExecutable inputFile
ncpu=Max#CoresOnlNode
» SMP mode with SMP-only executable (BRIGHT YELLOW). This is the case where
only thread parallelism is used on all cores available using the SMP-only executable.
The command typically used would look like:
lsdynaSMPexecutable myInputFile ncpu=Max#CoresOnlNode

Computing Technologies(3) 12" International LS-DYNA® Users Conference

Figure 12 shows Hybrid mode does not bring benefits for LS-DYNA explicit compared to
implicit as was reported in [reference 5] and [reference 6]. For this particular hardware, no case
shows benefits. Pure MPI is remarkably efficient compared to thread-parallelism.

7 Effect of using available cores subset on dense processors

7.1 Background

Two ways of looking at computing systems are through nodes which are their cost sizing
blocks and through number of cores available which are their throughput sizing factors. When
choosing the former and because processors have different prices, clock rates, core counts and
memory bandwidth, optimizing for turnaround time or throughput may depend on running less
cores than available. Since licensing costs are assessed by the number of threads or processes
being run as opposed to the underlying number of cores present on the hardware, there is no
licensing cost downside in not using all cores available. The deployment of threads or processes
across partially used nodes should be done carefully in consideration of the existence of shared
resources among cores.

7.2 Comparing Fully populated Interlagos to Half populated Interlagos

Nodes R5.1.1 IL Full vs Half
R3.2.1 Car2Car R5.1+Fully Populated Noe¢ Half Populated Nod

HALF POPULATED
SGI Altix ICEB400 SGI Altix ICEB400

10.00 IP106 & IP110 AMD IP106 & IP110 AMD
nNo 6282SE 2.6 Ghz - 6282SE 2.6 Ghz -
.E des 16-core 1333Mhz 16-core 1333Mhz
E 1 1.40 1.13
= 2 2.71 2.21
4 5.05 4.03
100 Nodes 8 8.70 7.02
1 10 16 13.53 10.18
32 19.85 16.56
—m— SGI Altix ICE8400 IP106 & IP110 AMD 6282SE 2.6 Ghz - 16-core 1333Mhz 64 18.60 25.72

—&— HALF POPULATED SGI Altix ICES400 IP106 & IP110 AMD 6282SE 2.6 Ghz -
16-core 1333Mhz

Figure 13: Node-wise comparison of fully vs. half populated Interlagos

7.2.1 Node-wise comparison

For low node numbers, fully populated Interlagos is faster than half-populated Interlagos because
16 cores per node does not use the memory bandwidth as optimally as 32 cores does (Figure 13).
However, for larger number of nodes, half-populated Interlagos overtakes fully populated
Interlagos because performance becomes limited by communication bandwidth. The overtaking
happens for larger number of nodes on larger datasets: 8 (neon), 16 (3cars), 64 (car2car).

7.2.2 Core-wise comparison

A given number of MPI processes runs faster on half-populated nodes (Figure 14). For half-
populated runs, difference between 1P106-board two single port Quad Data Rate Host Card
Adapters and IP110-board one dual port Quad Data Rate Host Card Adapters is barely detectable
since networking is not as stressed compared to fully populated, where, as expected, two single
port HCA’s (IP106) is faster than one dual port HCA (IP110) albeit by a small 6% ratio at 32
nodes.

10

12" International LS-DYNA® Users Conference Computing Technologies(3)

Cores R5.1.1 IL Full vs Half
LRE.l.)FuIIy Populated No# Half Populated Noc R3.2.1 Car2Car
HALF POPULATED

SGI Altix ICEB400
SGI Altix ICEB400 IP106 & IP110

IP106 & IP110 AMD AMD 6282SE 2.6 10.00
nCore 6282SE 2.6 Ghz - Ghz - 16-core
5 16-core 1333Mhz 1333Mhz g
16 113 £
32 1.490 221 °
64 2,71 4.03
128 5.05 7.02 100
256 8.70 10.18 16 Cores 160 1600
D1 13.53 16.56 | _m SGI Altix ICEB400 IP106 & IP110 AMD 6282SE 2.6 Ghz - 16-core 1333Mhz
1024 19.85 25-72 |, WALF POPULATED SGI Altix ICEB400 IP106 & IP110 AMD 6282SE 2.6 Ghz - 16-core
2048 18.60 1333Mhz

Figure 14: Core-wise comparison of fully vs. half populated Interlagos
7.7 Pertboost benefits

Nodes RS, 1.1 IL Full Open64 compiler sqiMPT vs Intel Compiler HP-MPI

R5.1+0pent4 compiler an Intel Compiler and HP-MPI
Openb4 &

R3.21 CarlCar
sub-itle

1000 perfBoost SGI Altix Intel§4 and HP-MPI
ICE8400 IP106 & 5GI Altix ICEB400
[P110 AMD GEIQSE [P106 & IP110 AMD
§ MNo 2.6 Ghz- 16-<ore 626825 2.6 Ghz -
i des 133Mhz l6-core 1333Mhz
g 1 140 1.34
2 211 2.56
4 5.0 412
1 870 155
1 I s 16 1353 1116
=3- Opentd & perfBoost SGI Altx ICER400 1P106 & IP110 AMD 62625 2.6 Ghz - 16.core |32 19.85 16.42
11330z
=4 Intel6d and HPMPL SGI At ICEBA0 IP106 & P10 AMD 62625E 2.6 Ghz - 16-core
13330z

Figure 15: Node-wise comparison of Open64 compiler with sgi MPT vs Intel Compiler and HP-MPI

On AMD processor, Open64 compiler combined with SGI MPT through PerfBoost gives better
performance than with Intel Compiler and HP-MPI (Figure 15). The breakdown of the
improvements are:

==================Intel-compiled HP-MPI

Elapsed 314 sec. (0 hours 5 min. 14 sec.) 29977 cycles

=== =======|ntel-compiled MPT 2.06 beta

Elapsed 300 sec. (0 hours 5 min. 0 sec.) 29977 cycles
==================AVX Beta HP-MPI

Elapsed: 212sec. (0 hours 3 min. 32 sec.) 29977 cycles
==================AVX Beta PerBoost MPT 2.06 beta

Elapsed: 202 sec. (0 hours 3 min. 22 sec.) 29977 cycles

11

Computing Technologies(3) 12" International LS-DYNA® Users Conference

Conclusions

This study showed how providing a higher grade of a single system attribute like CPU
frequency, interconnect and number of threads per process brings diminishing returns if the other
attributes are kept unchanged. Therefore trades-off’s exist when particular metrics such as
turnaround times, throughput, costs in acquisition, license, energy, facilities, maintenance to
minimize are chosen.

Attributions

LS-DYNA is a registered trademark of Livermore Software Technology Corp. SGI,

ProPack and Cyclone are registered trademarks or trademarks of Silicon Graphics

International Corp. or its subsidiaries in the United States or other countries. Xeon is a trademark
or registered trademark of Intel Corporation or its subsidiaries in the United States and other
countries. AMD and Opteron are trademarks or registered trademarks of Advanced Micro
Devices, Inc. Linux is a registered trademark of Linus Torvalds in several countries. SUSE is a
trademark of SUSE LINUX Products GmbH, a Novell business. All other trademarks mentioned
herein are the property of their respective owners.

References

[1] Dr. C. Cleve Ashcraft, Roger G. Grimes, and Dr. Robert F. Lucas. “A Study of LS-DYNA
Implicit Performance in MPP”. In Proceedings of 7th European LS-DYNA Conference,
Austria, 20009.
[2] Dr. C. Cleve Ashcraft, Roger G. Grimes, and Dr. Robert F. Lucas. “A Study of LS-DYNA
Implicit Performance in MPP (Update)”. 2009.
[3] SGI. Linux ¢ Application Tuning Guide. Silicon Graphics International, Fremont, California, 2009.
[4] John Baron and Paul Kinyon. “Selecting the Most Effective InfiniBand Topology”.
http://www.sgi.com/pdfs/4312.pdf , March 2011.
[5] Yih-Yih Lin and Jason Wang. “Performance of the Hybrid LS-DYNA on Crash Simulation with the Multicore
Architecture”. In 7th European LS-DYNA Conference, 2009.
[6] Olivier Schreiber, Scott Shaw, Brian Thatch, and Bill Tang. “LS-DYNA Implicit Hybrid

Technology on Advanced SGI Architectures”. http://www.sgi.com/pdfs/4231.pdf, July 2010.

12

http://www.sgi.com/pdfs/4312.pdf
http://www.sgi.com/pdfs/4231.pdf

