12th European LS-DYNA Conference

Identification of Material Parameters with LS-OPT®

Katharina Witowski, Christian Ilg DYNAmore GmbH

Koblenz, 15.05.2018

Outline

- Parameter Identification Standard approach
- Parameter Identification using DIC
 - New Features in LS-OPT 6.0
 - Interfaces to import DIC data
 - Alignment of test and simulation geometry
 - Extraction of Multihistories from simulation
- Curve Matching Metrics
- Example
 - Live demonstration
- Remarks

Parameter Identification

- Parameter Identification problems are non-linear inverse problems solved using optimization
- Computed curves (from LS-DYNA[®]), dependent on parameters, are matched to experimental curves
- Optimization provides a calibration of the unknown parameters

Calibration of material parameters - Standard approach

Global data from experiment is used

Problems:

- Instability typical in calibration problems, especially complex models with many parameters
- Local phenomena such as coupon necking/barreling missed

→ Use full-field data

Full field test result (4557 pts) from optical scan is mapped and tracked

Import DIC data into LS-OPT

- Interfaces (LS-OPT 6.0) Multihistories and Histories
 - ARAMIS (gom)
 - GENEX
 - Extraction from ASCII files
 - DIC data may be stored in multiple files
 - → One file per time stage

	File MultiHi	istories
Defined file multihistories	MultiHistory Name	Preview
force_epsX ×	force_epsX	2250
force_epsY ×	ARAMIS	2230
Add new	○ GENEX ○ File	2000
	Filename Template (wildcard)	1750
	MFz-00-04_5x8_Ausrichtung.xml Browse	1500-
	X-Component	돌 1250
	Flächenkomponente8x5.epsX 🗸	분 1000-
	Y-Component	⊻ 750-
	Kratt.DIM	500-
	Fl	lle Histories
Def	ined file historie History Name	Preview
MF	z0004 × MF20004	0.35
<u>Ado</u>	d new i File	0.3
		0.25
	Filename	0.2
	MFz-00-04-FINAL.csv Bro	owse 0.15-
		low plot 0.1-
		0.05
		-0 0.25 0.5

Alignment of test and simulation data

- Test and simulation geometries are typically in different coordinate systems
- Transformation of coordinates using least square formulation

$$\min_{T} \| \hat{s} X_{\mathsf{Test}} T - X_{\mathsf{FE}} \|$$

X_{Test}: Test points (subset), X_{FE} : FE model points, **T**: transform, \hat{s} : Isotropic scaling

Extraction of Multihistories from simulation

D3PLOT Interface (LS-OPT 6.0)

JJPLC	i inter	iace (LS	DUNI 0.0)		etry FEM Application Settin	epost			95
	Edi	t multipoint history	/	×	■ ≫ B ⊘ Assembly 1 L ⊕ ⊘ FEM Parts		i ost			SelPart
ame			Subcase		Geom Parts		viouo	lization in L S	חח	Keywrd
3PlotXStrain00							visua	Ization in LS	F F	CreEnt
Results Type Ndv Stress Result Strain Misc Infinitesimal Green-St Venant FLD Beam Source	Component L_surf_plastic_strain U_surf_plastic_strain L_surf_xx_strain L_surf_zz_strain L_surf_xy_strain L_surf_yz_strain U_surf_zx_strain U_surf_xy_strain U_surf_zy_strain	n U_surf_xy_strain n U_surf_yz_strain 0_u_surf_xx_strain M_surf_xy_strain M_surf_yz_strain M_surf_zy_strain M_surf_yz_strain M_surf_zx_strain L_surf_max_princ_str	 L_surf_min_princ_strain L_surf_effective_strain U_surf_max_princ_strain U_surf_rang_princ_strain U_surf_rinc_princ_strain U_surf_effective_strain M_surf_nax_princ_strain M_surf_and_princ_strain M_surf_min_princ_strain M_surf_effective_strain in 							PartD PartD Display RefChk Renum MSelect Subsys
ARAMIS	0 0_5011_22_50 and	O C_SUN_ZNG_phile_SUS		/		Alignment				Groups
Coordinate File RAMIS multihistory force_epsX			Defined transformations trans_tensile × Add new	Transformation N trans_tensile Test	ame		Simulation	alignment] 🚮 🍢 💓 "	Views PtColor
Nearest node 💲				Coordinates			Node ID			Fast F
Distance Tolerance				Test x coord	Test y coord	Test z coord	Node ID			
			7	-8.47391	.78577	2.02715	495	x		
lign tost and simul				17.57689	6.08299	2.38169	1435	×		
align test and simula	New ali	ignment Open in LSPP		-8.19484	-6.23842	2.0367	1925	×		
arts to be included	¥			16.96481	-3.20172	2.38046	2771	×		
 All Parts 				Add						
List of parts:										
×1. •				Scale factor 1.0	(default)					

Objective Functions -Matching of Scalar Values and Curve Matching Metrics

Matching of scalar values

- Standard Composite Functions
 - Targeted Formulation

- $f_{i}(\mathbf{X})$: simulation response as function of variable vector **x** G_i : target value
- W_i :
 - weighting factor
- normalization factor S_i :

Curve Matching Metrics

- Response (LS-OPT 6.0)
 - Matching of histories and multihistories
 - Mean Square Error
 - Partial Curve Mapping
 - Discrete Fréchet
 - Dynamic Time Warping
- Composite
 - Only matching of histories
 - Mean Square Error
 - Partial Curve Mapping

	Edit response			×
Name	Subcase		Multiplier	Offset
Residual		\sim	n/a	n/a
Match				
Multibistories				
Algorithm				
Mean Square Error				
 Partial Curve Mapping 				
 Discrete Frechet 				
 Dynamic Time Warping 				
Target multihistory				
test_tensile		~	Add new file	e multihistory
Computed multihistory				
cp_mh_first_principal_strain				~
Regression Points				
 From target curve 				
O Fixed number (equidistant, inte	rpolated)			

Ordinate-based Curve Matching Metric

Partial Curve Mapping

Discrete Fréchet

- Suitable for noisy curves
- Not suitable for partial mapping
- Minimum of the maximum of all possible edge lengths along a path, which connects all given data points

Dynamic Time Warping

- Suitable for noisy curves
- Not suitable for partial mapping
- Warping path: minimum accumulated distance which is necessary to traverse all points in the curves

Example

Example

Tensile test

- Material model *MAT_24
 - \rightarrow calibration of stress-strain curve
- Modified Hockett-Sherby flow curve formula: $f(\varepsilon_p) = D + B(1 - e^{-C\varepsilon_{pl}^N})$
 - D, B, C and N optimization parameters

Example

Target data (ARAMIS)

x strains

Live Demonstration

Remarks

- Make sure to evaluate exactly the same entities from simulation and test (filtering, ...)
- The result can never be better than the (material-) model
- Use <u>appropriate</u> analytical function for parameterization of LS-DYNA input curves
- Ranges for parameters?
 - \rightarrow increase if optimal value is bound and result not good enough (if parameter is sensitive!)
- Additional objective functions like max value, time of failure, ... might improve the results
- Multiple load cases: objectives might be in conflict

More Information ...

- Material Calibration using LS-OPT: A Longest Common Subsequence Method for Matching Curves with Different Length
 - N. Stander
 - Thursday, May 16, 09:20
- A Full-Field Calibration Approach to Identify Failure Parameters of a HS-Steel S. Cavariani Thursday, May 16, 11:05

More Information on the LSTC Product Suite

- Livermore Software Technology Corp. (LSTC) www.lstc.com
- LS-DYNA
 - Support / Tutorials / Examples / FAQ www.dynasupport.com
 - More Examples www.dynaexamples.com
 - Conference Papers www.dynalook.com
 - European Master Distributor www.dynamore.de
- LS-PrePost
 - Support / Tutorials / Download www.lstc.com/lspp
- LS-OPT
 - Support / Tutorials / Examples www.lsoptsupport.com

[THUMS[®] www.dynamore.de]

Thank you for your attention!

