12th European LS-DYNA Conference

Identification of Material Parameters with LS-OPT®

Katharina Witowski, Christian Ilg
DYNAmore GmbH

Koblenz, 15.05.2018
Outline

- Parameter Identification – Standard approach
- Parameter Identification using DIC
 - New Features in LS-OPT 6.0
 - Interfaces to import DIC data
 - Alignment of test and simulation geometry
 - Extraction of Multihistories from simulation
- Curve Matching Metrics
- Example
 - Live demonstration
- Remarks
Parameter Identification

- Parameter Identification problems are non-linear inverse problems solved using optimization
- Computed curves (from LS-DYNA©), dependent on parameters, are matched to experimental curves
- Optimization provides a calibration of the unknown parameters
Calibration of material parameters - Standard approach

- Global data from experiment is used

- Problems:
 - Instability typical in calibration problems, especially complex models with many parameters
 - Local phenomena such as coupon necking/barreling missed

→ Use full-field data

DIC data: deformation states

$t = 0$

Full field test result (4557 pts) from optical scan is mapped and tracked

Copyright by DYNAmore
Import DIC data into LS-OPT

- Interfaces (LS-OPT 6.0)
 - Multihistories and Histories
 - ARAMIS (gom)
 - GENEX
 - Extraction from ASCII files
 - DIC data may be stored in multiple files
 → One file per time stage
Alignment of test and simulation data

- Test and simulation geometries are typically in different coordinate systems
- Transformation of coordinates using least square formulation
 \[
 \min_T \| \hat{s} X_{\text{Test}} T - X_{\text{FE}} \|
 \]
 - X_{Test}: Test points (subset), X_{FE}: FE model points, T: transform, \hat{s}: Isotropic scaling
Extraction of Multihistories from simulation

- D3PLOT Interface (LS-OPT 6.0)

Visualization in LSPP
Objective Functions -
Matching of Scalar Values and
Curve Matching Metrics
Matching of scalar values

- Standard Composite Functions
 - Targeted Formulation

\[F = \sum_{j=1}^{m} W_j \left[\frac{f_j(x) - G_j}{S_j} \right]^2 \]

- \(f_j(x) \): simulation response as function of variable vector \(x \)
- \(G_j \): target value
- \(W_j \): weighting factor
- \(S_j \): normalization factor
Curve Matching Metrics

- Response (LS-OPT 6.0)
 - Matching of histories and multihistories
 - Mean Square Error
 - Partial Curve Mapping
 - Discrete Fréchet
 - Dynamic Time Warping

- Composite
 - Only matching of histories
 - Mean Square Error
 - Partial Curve Mapping
Ordinate-based Curve Matching Metric

- Mean Square Error

Computed curve: $F(x,z)$

Response Surface constructed for each interpolated matching point

Interpolated test curve $G(z)$

Test results

Residual e_i
Partial Curve Mapping

- Suitable for steep or hysteretic curves

\[\delta T_i = \delta S_i \]

\[(\xi_i', \eta_i') \]

\[(\xi_i'', \eta_i'') \]

\[\delta S_i \]

\[i = 1, 2, \ldots, m \]

\[j = 1, 2, \ldots, n \]

\[(\xi_j', \eta_j') \]

\[(\xi_j'', \eta_j'') \]

\[j = 1, 2, \ldots, n \]

\[j = 9 \]

Copyright by DYNAmore
Discrete Fréchet

- Suitable for noisy curves
- Not suitable for partial mapping
- Minimum of the maximum of all possible edge lengths along a path, which connects all given data points
Dynamic Time Warping

- Suitable for noisy curves
- Not suitable for partial mapping
- Warping path: minimum accumulated distance which is necessary to traverse all points in the curves

![Graph showing Dynamic Time Warping](image)
Example
Example

Tensile test

- Material model *MAT_24 → calibration of stress-strain curve
- Modified Hockett-Sherby flow curve formula:
 \[f(\varepsilon_p) = D + B(1 - e^{-C\varepsilon_p N}) \]
- \(D, B, C \) and \(N \) optimization parameters
Example

- Target data (ARAMIS)
 - x strains
Live Demonstration
Remarks

- Make sure to evaluate exactly the same entities from simulation and test (filtering, …)
- The result can never be better than the (material-) model
- Use **appropriate** analytical function for parameterization of LS-DYNA input curves
- Ranges for parameters?
 - increase if optimal value is bound and result not good enough (if parameter is sensitive!)
- Additional objective functions like max value, time of failure, … might improve the results
- Multiple load cases: objectives might be in conflict
More Information …

- Material Calibration using LS-OPT: A Longest Common Subsequence Method for Matching Curves with Different Length
 N. Stander
 Thursday, May 16, 09:20

- A Full-Field Calibration Approach to Identify Failure Parameters of a HS-Steel
 S. Cavariani
 Thursday, May 16, 11:05
More Information on the LSTC Product Suite

- Livermore Software Technology Corp. (LSTC)
 www.lstc.com

- LS-DYNA
 - Support / Tutorials / Examples / FAQ
 www.dynasupport.com
 - More Examples
 www.dynaexamples.com
 - Conference Papers
 www.dynalook.com
 - European Master Distributor
 www.dynamore.de

- LS-PrePost
 - Support / Tutorials / Download
 www.lstc.com/lspp

- LS-OPT
 - Support / Tutorials / Examples
 www.lsoptsupport.com
Thank you for your attention!

Your LS-DYNA distributor and more