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Abstract 
In this contribution, a finite element implementation of a micromechanically based constitutive model 
describing several inelastic effects of filled rubbers in multiaxial deformation states is presented. The 
model describes the elastic and inelastic effects of filled rubbers and is based on the network 
decomposition concept. Accordingly, the rubber network is decomposed into an isotropic elastic 
network E, responsible for the polymer matrix, and two anisotropic permanent damage networks (M 
and H) which are responsible for the filler-polymer interaction. The anisotropic damage networks M 
and H are capable of capturing the Mullins effect, hysteresis, permanent set and induced anisotropic 
stress softening.  
 
This model is implemented into LS-DYNA® by means of a subroutine within *MAT_USER_DEFINED 
_MATERIAL_MODELS (UMAT). The user can easily switch between different combinations of elastic 
and inelastic models by activating and deactivating each network. The user can also select the 
number of directions to be considered depending on the complexity of the loading history. The model 
with appropriate material constants demonstrates good agreement with experimental data. 
 

1 Introduction 
Elastomers are characterized by their ability to undergo large elastic deformations. Modeling of 
rubber-like materials have been widely addressed in recent years due to the increasing number of 
industrial applications. A reliable prediction of material behavior of elastomer is still very challenging 
due to the variety of complex mechanical properties. In particular, the mechanical response of 
elastomers is highly non-linear and exhibits hysteresis and stress softening (Mullins effect) upon cyclic 
loading. There is also some amount of permanent set upon removal of the applied load. 
 
Rubber-like materials are widely used in the automotive industry in variety of parts, such as seals, 
hoses, tires, brakes, engine and transmission mounts. The simulation of such rubber materials is 
becoming increasingly important in particular in automotive crashworthiness simulations. Nowadays, 
the design of these highly technical parts demands the use of a FE software for the numerical 
analysis. The implementation of an appropriate constitutive model of an elastomeric material in FE 
solver is a necessary prerequisite for a good numerical prediction. Although highly sophisticated 
material laws are available, no constitutive models capturing Mullins effect, induced anisotropy and 
permanent set are currently available in LS-DYNA.   
 
In LS-DYNA there exist several constitutive models for rubber, but many of them are incapable of 
modeling all the inelastic phenomena of interest - Mullins effect, induced anisotropy and permanent 
set. For example, *MAT_077 (Ogden or general hyperelastic model) and *MAT_181 (simplified rubber 
model) are two rubber models which are extensively used in industries for various applications. 
 
*MAT_OGDEN_RUBBER & *MAT_HYPERELASTIC_RUBBER material models reproduce the quasi-
static uniaxial tension test results based on parameters resulting from the fit to the corresponding 
experimental data. The hysteresis effect is captured by providing additionally unloading curves for 
some specific values of the deviatoric strain energy density. 
 
*MAT_SIMPLIFIED_RUBBER material model provides a rubber model defined by single uniaxial load 
curve. It reproduces the quasi-static uniaxial tension and compression tests exactly without fitting. The 
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hysteresis is reproduced by defining a single uniaxial unloading curve or two-parameter formulation 
(HU & shape).  
 
Although these models provide an accurate or even exact fit to experimental curves, they fail to 
capture anisotropic stress softening under cyclic loading (the Mullins effect) and a permanent set 
(residual deformation after unloading). In order to take these effect into account, a micromechanically 
based user-defined material model was implemented based on the analytical network averaging 
concept developed in [1]. The model is implemented in LS-DYNA using the user defined material 
subroutine (UMAT), which captures all the phenomena of interest. The model was further validated in 
comparison to experimental data from the uniaxial cyclic tension [2]. In this contribution, the 
implementation of the material model and its numerical features are discussed. 
 
 

2 Implementation of user defined material subroutine 
2.1 Constitutive model 
The network averaging model describes the elastic and inelastic behavior of filled elastomers in 
multiaxial states of deformation based on a network decomposition concept. Accordingly, the rubber 
network is decomposed into a purely elastic rubber network (E) containing polymer subnetworks with 
crosslinks at both ends, and two anisotropic damage networks (M and H) containing polymer 
subnetworks attached to two filler particles [1].  
 
The strain energy function (per unit referential volume) of the entire network is formulated as,  
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where  𝜅𝜅 is the bulk modulus, J = detF is the relative volume change and F is the deformation gradient. 
Terms A and B are responsible for the linear elastic behavior at low strains (𝜓𝜓𝐸𝐸). Term C controls the 
stress softening under cyclic loading condition (𝜓𝜓𝑀𝑀). Term D captures the hysteresis loops due to 
unloading at large strains (𝜓𝜓𝐻𝐻) and the last term U enforces the incompressibility condition.  
 
The other terms of the strain energy function are expressed as follows,  

𝜇𝜇𝑀𝑀𝑀𝑀 =  𝜇𝜇𝑐𝑐𝛿𝛿
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𝐶𝐶𝑜𝑜
 (1−Co)

𝜙𝜙(Λ𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚),  𝜇𝜇𝐻𝐻𝐻𝐻 =  𝜇𝜇𝑐𝑐(1−𝛿𝛿)
 m

𝐶𝐶𝑜𝑜
 (1−Co)

𝜙𝜙(Λ𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚), (3)   

𝜓𝜓𝑐𝑐 �𝑛𝑛, 𝜆𝜆̅� = 𝑛𝑛 𝑙𝑙𝑙𝑙 𝜋𝜋⋅𝑥𝑥

 √n sin� 𝜋𝜋
 √n

𝑥𝑥�  
,  𝜆̅𝜆 = ��𝐼𝐼1

3
�
𝑞𝑞

,    𝜈̅𝜈 = �𝐼𝐼2
3
, (4) 

𝐼𝐼1 = 𝑡𝑡𝑡𝑡𝑪𝑪�,       𝐼𝐼2 = 1
 2

[(tr 𝑪𝑪�)2 − 𝑡𝑡𝑡𝑡 𝑪𝑪�2],    (5) 

where 𝐼𝐼1 and 𝐼𝐼2are the principle invariants of the isochoric right Cauchy-Green tensor 𝑪𝑪�, 
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The internal variables at time t are defined as, 
 

Λ𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝜏𝜏∈(−∞,𝑡𝑡] 

Λ𝑖𝑖(𝜏𝜏),       Λ𝑖𝑖𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝜏𝜏∈[𝑡𝑡𝑖𝑖

𝑐𝑐,𝑡𝑡] 
Λ𝑖𝑖(𝜏𝜏),           Λ𝑖𝑖 =  �𝑪𝑪:𝑬𝑬𝑖𝑖 ⊗ 𝑬𝑬𝑖𝑖 (10) 

where the time at the end of the previous cycle 𝑡𝑡𝑖𝑖𝑐𝑐 is defined through the next local minimum value of 
Λ𝑖𝑖 . 
 
𝑬𝑬𝑖𝑖 (𝑖𝑖 = 1,2, … ,𝑚𝑚) denote unit vectors specifying preferred directions, where m is the number of 
directions considered for induced anisotropy. For the M and H networks the energy function is 
obtained by summation over m=21 directions of anisotropy (Eq. 2). The coordinates of 21 points on 
the unit sphere specifying these directions are given in Appendix. 
 

Parameters Physical meaning 
𝜇𝜇𝑐𝑐 Effective phantom shear modulus of pure rubber network [MPa] 
n Average number of chain segments 
q Stretch amplification exponent 
𝜇𝜇𝑡𝑡 Topological shear modulus of the pure rubber network [MPa] 
𝛼𝛼� Functionality of adsorption area 
𝐿𝐿� Average referential distance of subnetworks 
𝛿𝛿 Fraction of broken chains 
𝐶𝐶𝑜𝑜 Volume fraction of fillers 
𝜅𝜅 Bulk modulus 

Table 1: Physical meaning of material constants 

 
The response of the network averaging model depends on 9 material constants, whose physical 
meanings are described in Table 1. 

 

2.2 Constitutive relations 
In this section, the derivative of the strain energy function is presented in order to obtain the second 
Piola-Kirchhoff stress tensor S.  The Cauchy stress 𝝈𝝈 is the output of the material subroutine at each 
time step, which can be derived as follows. 
 
The strain energy function (Eq. 2) can be split into an isochoric (iso) and a volumetric (vol) part as 
follows, 

𝜓𝜓(𝑪𝑪) = 𝜓𝜓� (𝑪𝑪�)���
𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝑈𝑈(𝐽𝐽)�
𝑣𝑣𝑣𝑣𝑣𝑣

. (11) 

In Eq. 2, the terms A, B, C and D are represented by 𝜓𝜓� (𝑪𝑪�) and the volumetric part of energy function 
is written as 𝑈𝑈(𝐽𝐽). Thus, from Eq.11 we get,  

𝑺𝑺 = 2𝜓𝜓�(𝑪𝑪�),𝐂𝐂�����
𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖

+ 2𝑈𝑈(𝐽𝐽),𝐂𝐂 �����
𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣

, (12) 

𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 = 2𝜓𝜓�(𝑪𝑪�),𝑪𝑪 ������
𝑺𝑺�

: 𝑪𝑪�,𝑪𝑪�
𝒫𝒫𝑖𝑖𝑖𝑖𝑖𝑖

 (13) 

where 𝒫𝒫𝑖𝑖𝑖𝑖𝑖𝑖 denotes the isochoric projection tensor [3]. 
 

𝑺𝑺 = � 2𝜇𝜇𝑐𝑐
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, (14) 

𝝈𝝈 = 1
𝐽𝐽
𝑭𝑭𝑭𝑭𝑭𝑭𝑇𝑇. (15) 

The Cauchy stress is therefore calculated by the material subroutine for every element at each time 
step based on the Eq. 14-15. 
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2.3 User defined material 
In this section, the definition for different variables of the user defined material card is presented. The 
constitutive model described in Section 2.1 was implemented in the LS-DYNA material subroutine. 
The keyword input shown in Fig. 1 is used to define the material properties for the subroutine. The 
user is able to activate or deactivate the elastic and inelastic networks and as well as to switch on/off 
the hysteresis and Mullins effects by using an additional material parameter.  
 

 
Fig.1: Material card of *MAT_USER_DEFINED_MATERIAL_MODELS  

 
The number of material parameters defined in the user subroutine is specified in the material card 
under the variable LMC (Length of Material Constant) as shown in Fig. 1. As discussed in Section 2.1, 
totally 9 material constants are responsible for the behavior of network averaging model of rubber 
material. In addition, a switch parameter also helps the user to switch between different networks of 
the model. Therefore, totally 10 material parameters are defined in LMC. The LMC material 
parameters are defined in the card as shown in Fig. 2 with 8 parameters per card.  
 

 
Fig.2: LMC material parameters definition card 

 
User defined history variables are used when the preceding value in previous time step have to be 
used in the current time step. Since the value of internal variables, such as Λ𝑖𝑖 , Λ𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and Λ𝑖𝑖𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚  at 
current time step depend on the value of the previous time step, they are considered as history 
variables (NHV). These internal variables are also directionally dependent and their update at the 
beginning of each loading cycle is important for the prediction of the directional sensitivity of stress 
softening.  
 
The number of history variables is defined in the material card under NHV. In the material subroutine, 
4 history variables are used in total and each history variable is defined for every of 21 preferred 
directions. 
Therefore, 84 history variables are defined in NHV. Note that the number of the preferred directions 
can be reduced depending on the complexity of the loading. 
 
The 9 components of deformation gradient calculated by LS-DYNA at each time steps are also saved 
as history variables. These history variables are allocated after the last index of user defined history 
variables (NHV) by default.  
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3 Simulation and results 
3.1 FE Model set-up 
For the verification purposes, a uniaxial cyclic tension test was simulated in LS-Dyna. A solid element 
as shown in Fig. 3 with a specimen gauge length, width and thickness equal to 1 mm and the default 
constant stress solid element formulation (ELFORM=1) was used. The solid element was subjected to 
a kinematically controlled loading and unloading. The boundary conditions (as shown in Table 2) were 
defined to different nodes using the keyword *BOUNDARY_PRESCRIBED_MOTION. The maximal 
strain of 120% strain was applied with an increment of 40%. 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.3: 3D Solid Element  

 
 
Nodes Boundary conditions 
1 Fixed in Y direction 
2 Fixed in X and Y directions 
5 Fixed in X, Y and Z directions 
6 Fixed in Y and Z direction 
3,4,7,8 Fixed in X and Z direction 

Displacement in Y direction 

Table 2: Boundary conditions defined to FE Model (refer Fig. 3 for node definition) 

 
The *MAT_USER_DEFINED_MATERIAL_MODELS material card was defined as explained in Section 
2.3. 
The 10 material parameters are defined in the LMC parameter definition card (see Fig. 2) in the order 
represented in Table 3.   
 
 
Variables Parameters 
P1 𝜇𝜇𝑡𝑡 
P2 𝜅𝜅 
P3 n 
P4 q 
P5 𝜇𝜇𝑐𝑐 
P6 𝐶𝐶𝑜𝑜 
P7 𝐿𝐿� 
P8 𝛼𝛼� 
P9 𝛿𝛿 
P10 switch between different networks 

EQ.1: Only elastic network 
EQ.2: Elastic and inelastic network with Mullins effect and 
          hysteresis 
EQ.3: Elastic and inelastic network with Mullins effect  
EQ.4: Elastic and inelastic network with hysteresis 

  

Table 3: Parameter definition to corresponding variables in material card 
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Note that for a hyperelastic material, the IHYPER variable in material card 2 (see Fig.1) should be set 
to 1. The IBULK and IG variables in card 2 are set to 2 and 1, which automatically takes the value of 
the material parameter P2 and P1 in card 3, corresponding to the bulk modulus and shear modulus of 
the material, respectively.  
 

3.2 Results and discussion 
In this section, predictions of the implemented material model with all inelastic effects are presented. 
The Fig. 4 shows the Cauchy stress plotted versus stretch in uniaxial tension by considering 21 
preferred directions and taking both inelastic networks into account (Table 3). The Mullins effect and 
hysteresis upon loading and unloading as well as the permanent set are appropriately captured by the 
model.  
 
 
 
 

 

 

                              

   
 
 
 
 
 
 
 
 

Fig.4: Cauchy Stress vs. stretch predicted by the implemented model with all inelastic effects (the 
Mullins effect, hysteresis and permanent set) 

 

 
Fig.5: The inelastic response of the material by only activating M network (the Mullins effect) 

 
As discussed in the Section 2.3, the user defined material is able to capture the inelastic effects 
separately by using a switch parameter (refer Table 3). Predictions of the model with only Mullins 
effect (switch 3) and only with hysteresis (switch 4) are shown in Fig. 5 and Fig. 6, respectively. As it 
can be seen in Fig. 5, the reloading curve follows the previously unloaded curve (no hysteresis) up to 
the maximum stretch achieved during the initial loading. Afterward, it repeats the initial loading curve 
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(primary curve). Such behavior is referred to as the Mullins effect. Similarly, the area between the 
reloading curve and the previously unloaded curve (hysteresis loop) is captured by the model as 
shown in Fig. 6. 

 
Fig.6: The inelastic response of the material by only activating H network (hysteresis) 

 
The evolution of the Mullins effect is governed by Λ𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 which remains the same as long as the 
previous maximal stretch in the direction i  is not exceeded. The evolution of the hysteresis is 
described by Λ𝑖𝑖𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 which recovers after a loading cycle (see Eq. 10). The evolution of the maximal 
stretch and maximal cyclic stretch in the direction of loading is described by the user defined material 
model as illustrated in Fig. 7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7: Evolution of the maximal cyclic stretch (𝛬𝛬𝑖𝑖𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚), maximal stretch (𝛬𝛬𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) and macro-
stretch (𝛬𝛬𝑖𝑖 )  

4 Summary 
In the current work, the network averaging model [1] describing several inelastic effects of elastomers 
such as the Mullins effect, hysteresis, induced anisotropy and permanent set is implemented in the 
LS-DYNA user defined material subroutine. Accordingly, the rubber network is decomposed into an 
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elastic network (E), an anisotropic permanent damage network (M) and an anisotropic recoverable 
network (H). This facilitates the user to switch between different networks depending on the 
occurrence of these characteristics in the material. The number of preferred directions of anisotropy 
can also be modified depending on the tension of loading. The behavior of the implemented material 
model was verified by simulating uniaxial, which showed good results in comparison with the results of 
same material model implemented in MATLAB. Uniaxial cyclic loading was further simulated for the 
validation and parameter identification in comparison to experimental data [2].  
 

5 Appendix 
X Y Z 
1 0 0 
0 1 0 
0 0 1 

0,707107 0,707107 0 
0,707107 -0,70711 0 
0,707107 0 0,707107 
0,707107 0 -0,70711 

0 0,707107 0,707107 
0 0,707107 -0,70711 

0,387907 0,387907 0,836096 
0,387907 0,387907 -0,836096 
0,387907 -0,387907 0,836096 
0,387907 -0,387907 -0,836096 
0,387907 0,836096 0,387907 
0,387907 0,836096 -0,387907 
0,387907 -0,836096 0,387907 
0,387907 -0,836096 -0,387907 
0,836096 0,387907 0,387907 
0,836096 0,387907 -0,387907 
0,836096 -0,387907 0,387907 

 

Table 4: Coordinates of the point on the unit sphere defining preferred directions of anisotropy 
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