x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Numerical Simulations in Vehicle Restraint System Development

Since 2016 there has been a research project going on which is focused on development of new design of portable road barriers with integrated anti-noise walls. The key feature of the new barrier design is a material selection for anti-noise panels. New panels made of wood and cement-bonded wood-chip material called Velox significantly improve noise absorption properties of the barrier. However, the question is: what are their qualities from mechanical point of view? And will such barrier be able to withstand crash tests required by the highest containment level, H4b according to EN1317 standard? Numerical simulations are being utilized in this research at all levels in order to reduce costs and to predict how particular design modifications influence restraint capabilities of the barrier. As a starting point there were crash test simulations with original barrier design performed and after achieving sufficient correlation between the simulations and the real crash tests, modified systems were designed and tested. Firstly, there were the new panels. From mechanical point of view, Velox is very complex material so an extensive investigation of its mechanical properties had to be performed. This investigation covered small scale tests (quasistatic and dynamic) and large scale dynamic tests as well. Based on the experiments there was an appropriate material model chosen and its parameters determined to faithfully describe behavior of the material. Since crash test simulations with the first Velox wall design identified several weaknesses, certain preventive measures had to be introduced. Besides design changes of the bottom part of the barrier, several kinds of Velox boards back face treatment were proposed in order to enhance resistance and keep overall integrity of the structure after crash load exposure. All these design changes are now being analyzed and further developed based on crash test simulations but also with regard to production processes and mobility of the barrier.

application/pdf Sebik_SVS_FEM.pdf — 822.7 KB