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Abstract 
The projected subgradient method is major new methodology development for the topology 
optimization of huge, multi-disciplinary structural problems; for example, the combined impact, statics, 
and NVH design of a whole body in white. This paper accordingly discusses the projected subgradient 
method in LS-TaSC 4, with specific reference to the basic theory, the ability to combined impact and 
NVH load cases, and the performance for huge models. Also mentioned is how the method has been 
enhanced to handle generalized constraints using the multi-tensor numerical scheme. 
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1 Introduction 
Generally, multi-disciplinary design optimization (MDO) is employed to seek for the synergism of 
several primary-mutually-interacted disciplines for improving the design of systems [1]. Due to the 
multi-fidelity and strong coupling between the multiple disciplines, the analysis and optimization 
solution time in MDO is typically much higher than the sum of the computational time of the constituent 
single-discipline optimization. Nevertheless, huge and complex models of the practical engineering 
structures and systems, such as automobiles and aerospace vehicles, make the burden of 
computational cost of MDO even more serious, because the MDO of these huge models are usually 
facilitated by a large number of design variables. With the rapid development of super-powerful 
computers over the past decade, interest in the MDO applications to sizing, shape, and topology 
optimization of huge and complex models has grown [2-3]. Multifidelity approximations and ensembles 
of metamodels have been effective and powerful means to alleviate the computational costs in the 
sizing and shape optimization of MDO problems [4-5]. However, they are not effective techniques for 
the topology optimization of MDO problems due to the accuracy and dimensionality issues of the 
metamodels. The topology optimization of MDO problems is a challenging task, especially if the MDO 
problem has a huge model saying with tens of millions of meshing elements (i.e., topological 
variables). In such a case, the choice of optimization approach obviously has enormous impact on the 
computational efficiency and convergence speed of topology optimization of huge MDO models.  

In literature, the optimization approaches for addressing the topology optimization problems can 
be categorized into two major sets, including gradient- and non-gradient-based optimization 
approaches. The non-gradient-based optimization approaches generally refer to the heuristic 
approaches, such as genetic algorithm [6]. The non-gradient-based optimization approaches do a 
good job of spanning the vast majority of the design space because they have a good probability of 
attaining a global optimum solution. But the computational efficiency of the non-gradient-based 
optimization approach, which strongly depends on the number of design variables, is dragged down 
significantly due to numerous function evaluations within the design space. Apparently, the non-
gradient-based optimization approaches are not options for solving topology optimization of huge 
MDO models. The gradient-based optimization approaches, such as the sequential quadratic 
programming [7], sequential linear programming [8], optimality criteria (OC) [9], and the method of 
moving asymptotes (MMA) [10] and its globally convergent version, the Globally Convergent Method 
of Moving Asymptotes (GCMMA) [11], are often used to search for the best material distribution of a 
structure in a manner of providing numerical material interpolation or geometric boundary 
representation schemes. Among the numerical schemes developed for topology optimization, the 
SIMP (Solid Isotropic Material with Penalization) method [12] is the most commonly used technique 
for building analytical relationships between the design variables and structural responses. With the 
analytical relationships by using SIMP, sensitivity analysis yields the derivatives of the structural 
responses with respect to the topological design variables in despite of huge MDO models. The 
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gradient-based optimization approaches are efficient for solving problems with a large number of 
design variables using a limited number of function evaluations.  

The choice of an algorithm for huge topology optimization poses some problems, specifically 
with respect to combining impact and NVH results and the huge number of variables. From our 
experience doing impact analysis it is clear that the most efficient method will involve projecting the 
problem onto the plane of constant mass and solving with an efficient Quasi-Newton method. Later in 
the project, the literature revealed that this approach actually belongs to a class of methodologies 
known as the subgradient methods developed by Shor [13] and other Soviet researchers. Although 
our implementation differ in some aspects, we adopted the existing name of projected subgradients 
because of the joint interest in properties such as (i) nondifferentiable functions, (ii) fixed step length, 
and (iii) jumps or increases in the function values which are properties of both the projected 
subgradient method [14] and the impact problems studied by us. 

The current projected subgradient implementation is similar to the steepest descent method, but 
it is presented for topology optimization of constrained optimization problems. The main idea of the 
projected subgradient method is to project the update design along the decent direction on to the 
plane of the mass fraction constraint function, such that the mass constraint is satisfied automatically. 
Specifically, the combined impact, statics, and NVH design of a whole body in white with a mass 
constraint is targeted to solve for the huge MDO of an automobile. To the best of the authors’ 
knowledge, the topology optimization of MDO problems for combined impact, statics, and NVH 
design of a whole system in white has not been touched yet in the field of topology optimization. The 
projected subgradient method is implemented in the latest version of LS-TaSC together with the 
high-fidelity analysis tool, LS-DYNA®. Three benchmark examples for NVH, multi-disciplinary design 
optimization considering NVH, impact and static load cases, and the ability to run huge models, are 
conducted to demonstrate the validity and computational efficiency of the proposed method. 
 

2 The Projected Subgradient Method 
2.1 Fundamentals 
The projected subgradient method is proposed based on the steepest decent method while 
considering a structural constraint (e.g., mass constraint) and variable bound limits at the same time. 
In the steepest decent method, an update of the design is written as 

𝒙𝒙(𝑘𝑘+1) = 𝒙𝒙(𝑘𝑘) − 𝛼𝛼(𝑘𝑘)𝒅𝒅(𝑘𝑘)                                                                 (1)  

where the upper subscript k represents the iteration number. 𝒙𝒙(𝑘𝑘) and 𝒙𝒙(𝑘𝑘+1) are the designs in the kth 
and (k+1)th iterations, respectively.  𝛼𝛼(𝑘𝑘) is the desired step size.  𝒅𝒅(𝑘𝑘) is the derivative vector of the 
objective function with respect to the design variables. The design search vector between two 
iterations is represented as ∆𝒙𝒙 = −𝛼𝛼(𝑘𝑘)𝒅𝒅(𝑘𝑘). 

In the projected subgradient method, the design search vector is projected onto the plane of an 
inequality structural constraint, so that the constraint function is satisfied with the update of the 
design. Assume that normal vector of the plane of the constraint function is presented as n. The 
design search vector projected onto the constraint plane can be expressed as, 

∆𝒙𝒙𝑃𝑃 = ∆𝒙𝒙 −  �
∆𝒙𝒙∙𝒏𝒏

(|𝒏𝒏|)2
 
�  𝒏𝒏                                                                        (2) 

where ∆𝒙𝒙𝑃𝑃is the design change vector after the projection onto the constraint function. 

Besides the constraint function, the side bounds on the design variable should be taken into 
consideration as well, as the side bounds on the design variables may cause the computations to be 
off. In order to correct for the effect of the side bounds of the design variables, a parameter 𝜆𝜆 is 
introduced to compensate the side bound effect on the updated design. The design search vector is 
thus expressed as, 

∆𝒙𝒙�𝑃𝑃 = ∆𝒙𝒙 − (1 + 𝜆𝜆) �
∆𝒙𝒙∙𝒏𝒏

(|𝒏𝒏|)2
 
�  𝒏𝒏                                                           (3) 

where ∆𝒙𝒙�𝑃𝑃 is the design change vector after considering the side bound affects. In the above equation, 
the physical meaning of 𝜆𝜆 is to move the plane of the constraint function up and down, so that the 
constraint function is satisfied with updated designs within the side bounds. The value of 𝜆𝜆 can be 
positive, zero, or negative depending on how much the constraint plane should be moved. λ is 
typically found using a bisection algorithm such as to satisfy the constraint function. 
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Therefore, the updated design in the projected subgradient method is presented as, 

𝒙𝒙(𝑘𝑘+1) = 𝒙𝒙(𝑘𝑘) + ∆𝒙𝒙�𝑃𝑃                                                                        (4) 

Due to the compensation of the side bound affects in the computation, the above updated 
design may exceed the range of the side bounds, [𝑥𝑥min, 1.0]. Thus the updated design should be 
trimmed so that all the design variables have values within the range of the side bounds. The final 
updated design is obtained as 

𝑥𝑥𝑖𝑖
(𝑘𝑘+1) = �

𝑥𝑥min 𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖
(𝑘𝑘) + ∆𝑥𝑥�𝑖𝑖𝑃𝑃 ≤ 𝑥𝑥min

𝑥𝑥𝑖𝑖
(𝑘𝑘) + ∆𝑥𝑥�𝑖𝑖𝑃𝑃 𝑖𝑖𝑖𝑖 𝑥𝑥min < 𝑥𝑥𝑖𝑖

(𝑘𝑘) + ∆𝑥𝑥�𝑖𝑖𝑃𝑃 < 1.0
1.0 𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖

(𝑘𝑘) + ∆𝑥𝑥�𝑖𝑖𝑃𝑃 ≥ 1.0

                                       (5) 

Note that, without considering the constraint function, the updated design in Equation (1) will 
drive the structural property related to the constraint function to infinity. However, the updated design 
in Equation (5) can guarantee that the optimal design satisfies the constraint function all the time.  

2.2 Step size and scaling of the gradients 
The projected subgradient method differs from other methods in how the step size is computed. In 
most other methods, a line search is conducted to find the minimum function value in the search 
direction. In the projected subgradient method, however, no line search is required. Instead, a step 
size must be selected using the consideration of mass flow change between the iterative designs. 

For the class of problems considered here, there is a natural choice of step size: the amount of 
material allowed to flow during an iteration. This means the step size depends on the mechanics of the 
problem and not the number of variables. Numerical concerns such as the mesh size therefore do not 
affect the step size. 

To implement material flow as controlling the allowing step size requires that the difference 
between two sequential designs in computation should be considered. The material flow is a scaled 
version of the L1 norm of the variable changes, 

 𝑚𝑚𝑓𝑓 = 1
𝑁𝑁
∑ |∆𝑥𝑥𝑖𝑖|𝑖𝑖=𝑁𝑁
𝑖𝑖=1                                                                            (6) 

while the step size is the L2 norm of the variable changes,  

𝑠𝑠 = �∑ (∆𝑥𝑥𝑖𝑖)2𝑖𝑖=𝑁𝑁
𝑖𝑖=1                                                                           (7) 

where N is the total number of elements in the structure. 𝑚𝑚𝑓𝑓 represents the L1-norm-based mass flow 
and s is the step size. The L1 norm and L2 norm of the variable changes are equal if all the variable 
changes have the same absolute value. In such a case, a material flow of 𝑚𝑚𝑓𝑓����requires an absolute 
change of 𝑚𝑚𝑓𝑓���� for each variable, given that the material flow is 𝑚𝑚𝑓𝑓 = 1

𝑁𝑁
∑ |∆𝑥𝑥𝑖𝑖|𝑖𝑖=𝑁𝑁
𝑖𝑖=1 = 1

𝑁𝑁
∑ 𝑚𝑚𝑓𝑓����𝑖𝑖=𝑁𝑁
𝑖𝑖=1 = 𝑚𝑚𝑓𝑓����. For 

this case, the step size is therefore computed as 

𝑠𝑠 = �∑ (∆𝑥𝑥𝑖𝑖)2𝑖𝑖=𝑁𝑁
𝑖𝑖=1 = �∑ 𝑚𝑚𝑓𝑓����2𝑖𝑖=𝑁𝑁

𝑖𝑖=1 = √𝑁𝑁𝑚𝑚𝑓𝑓����                                                                (8) 

Thus, different from the linear-search-based step sizes in the steepest decent method, a constant 
step size is used in the projected subgradient method.  

In order to improve the computational stability, the value of N in Equation (8) must be adjusted to 
reflect the volume of the part being designed in the current iteration. Therefore, the value of N should 
be taken as the number of grey elements, 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 in the design space, where the grey elements means 
the associated design variables of elements not at the side bounds. Besides the mass flow of the 
grey elements, the gradients of the objective must be scaled to its norm such that it matches the step 
size. Thus, the step size in the computation is obtained as, 

𝛼𝛼(𝑘𝑘) = 𝑠𝑠(𝑘𝑘)

�𝒅𝒅(𝑘𝑘)�
= �𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑘𝑘) 𝑚𝑚𝑓𝑓�����

�𝒅𝒅(𝑘𝑘)�
                                                               (9) 

2.3 Constrained optimization 
Most topology optimization problems have constraints on the structural responses; for example, a 
maximum displacement or required energy absorption. The current implementation uses the multi-
tensor scheme as presented at the 2016 LS-DYNA conference [15]. This has been extended using 
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continuous variables [16] as partially presented by Roux at the time and more fully at the 2017 
USNCCM conference [17]. In addition, the projected subgradient method offers other possibilities. 
 

3 Topology optimization of combined impact, statics, and NVH design 
The typical goal of topology optimization is to obtain a structure with the best use of the material. 
Compliance and the strain energy density are the most commonly used objectives for linear static 
problems. For dynamic problems, like crashworthiness simulations, the structure needs to absorb the 
energy while maintaining the structural integrity and keeping the peak loads transmitted to the 
occupants low. In this paper, topology optimization of a structure with multiple load cases, specifically 
the combined impact, statics, and NVH load cases, is studied and solved by using the proposed 
method. 
The optimization problem is formulated as 

 min 
𝒙𝒙

  ∑ 𝑤𝑤𝑗𝑗𝑖𝑖𝑗𝑗(𝒙𝒙)𝐿𝐿
𝑗𝑗=1                                                                         (10) 

subject to 

∑ 𝜌𝜌(𝑥𝑥𝑖𝑖)𝑉𝑉𝑖𝑖𝑁𝑁
𝑖𝑖=1 ≤ 𝑀𝑀∗                                                                        (11) 

               𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑥𝑥𝑖𝑖 ≤ 1.0   (𝑖𝑖 = 1,⋯ ,𝑁𝑁; 𝑗𝑗 = 1,⋯𝐿𝐿) 

where the lower subscript i and j are the element number and load case indices, respectively. There 
are L load cases. 𝑖𝑖𝑗𝑗(𝒙𝒙) represents the objective function of the jth load case. 𝑤𝑤𝑗𝑗 is the weight factor 
applied to the objective function of the jth load case. 𝜌𝜌(𝑥𝑥𝑖𝑖) is the density of the ith element, 𝑉𝑉𝑖𝑖 is the 
volume of the ith element, and M* represents the allowable mass.  

The objective for the NVH load case is to maximize the fundamental frequency, while for the impact 
and linear statics load cases the objective is to minimize the work done by the structure, which for 
linear structures is equivalent to minimizing the compliance or maximizing the stiffness. The search 
directions for the fundamental frequency is the derivative with respect to the element variables as 
described in the standard literature on design sensitivity analysis. The search directions for the impact 
and static load cases are computed from the internal energy densities of the elements. This history of 
using the internal energy density for design dates back at least to work by Venkayya et al. [18] in 1968 
and is quite established as an optimality criteria. 

The Projected Subgradient method uses a new stopping criteria called Solidification. It measures 
the discreteness of the optimized designs. A higher Solidification value indicates better topological 
designs. Assuming the total number of design variables as 𝑁𝑁 = 𝑁𝑁𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣 + 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑁𝑁𝑠𝑠𝑣𝑣𝑠𝑠𝑖𝑖𝑣𝑣 , we define 
Solidification 

𝑀𝑀 = min (𝑀𝑀1,  𝑀𝑀2)                                                                   (12) 

where 𝑀𝑀1 = 𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+𝑁𝑁𝑠𝑠𝑣𝑣𝑠𝑠𝑣𝑣𝑣𝑣
𝑁𝑁

 , and 𝑀𝑀2 = 1 − ∑ 4𝑥𝑥𝑣𝑣(1−𝑥𝑥𝑣𝑣)
𝑁𝑁
𝑣𝑣=1

𝑁𝑁
. A default Solidification value of 0.95 is used for 

examples in this paper. 
 

4 Examples 
The examples show a comparison with the benchmark results for NVH, multi-disciplinary design 
optimization considering NVH, impact and static load cases, and the ability to run huge models. 

4.1 Fundamental frequency and multidisciplinary problems 
This example demonstrates the computational ability of the projected subgradient implementation for 
fundamental frequency and MDO problems for combined statics and NVH design. As shown in Fig. 1, 
an LS-DYNA model of a beam with dimensions of 8 mm × 1 mm × 0.5 mm is used as a benchmark 
problem to evaluate this. The material properties of the beam include density 𝜌𝜌 = 1.0, Young’s 
modulus 𝐸𝐸 = 10 GPa, and Poisson’s ration 𝑣𝑣 = 0.3. A load of 10 units is applied at the center of the 
beam. Three boundary conditions are considered for the beam: 1) both ends of the beam are fixed, 2) 
left end of the beam is clamed and the right end is fixed, and 3) both ends of the beam are clamped. 
The beams with three boundary conditions are noted briefly as fixed-fixed, clamped-fixed, and 
clamped-clamped beams. A mass fraction of 0.5 is defined as the target mass fraction with element 
deletion switched on. 
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Fig.1: The geometry of a beam. 

 
Firstly, topology optimization of the beam for fundamental frequency maximization is studied using 

LS-TaSC. Three optimization designs are conducted for the beam in terms of three boundary 
conditions. With the same optimization iterations, 100 iterations, three optimizations converge and the 
corresponding optimized configurations of the beam are shown in Fig. 2 a), b), and c) respectively. It 
can be seen that, the optimized results reflects the effects of the boundary conditions on the final 
configurations well. The optimized configurations show symmetric shapes on both sides of the beam 
because of the setting of boundary conditions. Three configurations of the beam in Fig. 2a), b) and c) 
yield maximal fundamental eigenfrequencies of 27.63 Hz, 44. 51 Hz, and 67.50 Hz, respectively. 

 

 
a) Optimized geometry of the fixed-fixed beam 

 

 
b) Optimized geometry of the clamped-fixed beam  

 

 
c) Optimized geometry of the clamped-clamped beam 

Fig.2: Optimized configurations of the beam with three boundary conditions for fundamental 
eigenfrequency maximization. 

 
Secondly, topology optimization of the beam for multidisciplinary design of combined statics and 

NVH load cases are conducted by using the proposed method in LS-TaSC. The compliance and the 
first eigenfrequency of the beam are maximized simultaneously in the design. With respect to three 
boundary conditions, three MDO problems are solved. The convergence speeds are 40 iterations for 
the fixed-fixed beam, 46 iterations for the clamped-fixed beam, and 48 iterations for the clamped-
clamped beam. The final configurations for three MDO problems of the beam with three boundary 
conditions are shown in Fig. 3 a), b), and c), respectively. Three configurations of the beam in Fig. 3a), 
b) and c) yield maximal fundamental eigenfrequencies of 27.16 Hz, 42.01 Hz, and 60.26 Hz, 
respectively. 

 

F = 10 
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a) Final structure for MDO of the fixed-fixed beam 

 

 
b) Final structure for MDO of the clamped-fixed beam  

 

 
c) Final structure for MDO of the clamped-clamped beam 

Fig.3: Optimized configurations of the beam with three boundary conditions for combined statics and 
NVH design. 

 
We can see from the above results that, the projected subgradient method can solve the MDO 
problems very well. In spite of the time for the finite element analysis in LS-DYNA, the convergence 
speeds of the MDO problems are much faster than that of the single-load-case problem of the 
fundamental eigenfrequency maximization. 

4.2 Combined NVH, impact, and statics load case 
This example shows MDO results and design contributions plots. The initial design together with the 
loading is shown in Fig. 4. It is designed for three load cases: 

1. Fundamental frequency – the fundamental frequency of the structure is maximized 
2. Impact load – an impactor hitting the structure as shown 
3. Linear bending load case – a static load is applied. 

The structure is designed is using 192,000 elements and a mass fraction of 0.1. All load cases are 
assigned an equal weight for the design. The material interpolation used is SIMP with continuation to 
final value of 𝑝𝑝 = 4. The problem is optimized for 80 iterations with the resulting design as shown in 
Fig. 4. 
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Fig.4: MDO topology design problem. The three load cases are shown at the top, while the bottom 

has different views of the final design.  

 
The design contribution plot is shown in Fig. 5. The plot shows the load paths created by the 

different load cases. This is a new plot type available in the GUI for the analysts to study MDO 
designs. 
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Fig.5: Contribution of the different load cases to the final structure. The history plot shows the 

fractional mass use of the various load cases, while the fringe plot shows which load case is 
using which piece of material. The fundamental frequency load case used most of the material. 

 
It is interesting to note that very little of the structure is used purely for the linear bending load 

case. Most of the structure is used for the bending load case together with either the impact or the 
fundamental frequency load case. The impact and fundamental frequency load cases are dominating 
the use of certain sections of material. 

4.3 Computational effort for a huge model (10+ million elements) 
This example demonstrates the computational ability of the projected subgradient implementation for 
huge problems. A LS-DYNA model with 13.1 million elements is used to evaluate this.   
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Fig.6: Symmetric beam problem. The top plot shows the initial design with the boundary conditions 

fixed at both ends and with the load at the center. The bottom plot is the design at the last 
iteration using an isosurface plot. 

 
The beam model shown in Fig. 6 is considered as the design part for the topology optimization 

using LS-TaSC. It is a rectangular beam fixed at both ends with a pole impacting at the center at an 
initial velocity of 10 m/s. A mass fraction of 0.25 is defined as the target mass fraction with element 
deletion switched on. The optimization is done for a total of 30 iterations. 

The following table summarizes the computational cost associated with running the topology 
optimization within LS-TaSC. Given that this is a huge problem, all the numbers look reasonable. Note 
that the projected subgradient algorithm ran on a desktop with on a single CPU utilizing about 15GB of 
memory, while the structural evaluation was offloaded to a cluster. The optimization algorithm takes 
longer for the design of the first design iterate, because it computes the optimal step size during the 
first iteration. 
 
Number of elements in the model 
Reading LS-DYNA input file  

13.1 million 
3.5 CPU minutes  (1 CPU) 

Generating topology filters 2.15 CPU minutes  (1 CPU) 
LS-DYNA analysis time for one iteration 
 
Extracting results from d3plot files for each 
iteration 

600 CPU hours 
(5 hours using 120 CPUs on a remote cluster) 
46 CPU seconds  (1 CPU) 

Part design time – first iteration 25 CPU minutes (1 CPU) 
Part design time – all other iterations 2 CPU minutes (1 CPU) 
Peak memory use by LS-TaSC 15 GB 

Table 1: Computational cost for the huge problem. 

 

5 Conclusion 
The projected subgradient method gives us the ability of doing multidisciplinary design optimization, 
specifically the ability to design for the triple crown of linear statics, impact, and NVH load cases 
together. In addition one is able to explore the resulting multidisciplinary design visually - examining 
both load paths in the structure as well as the amount of material dedicated to a certain use. 

Velocity 

Symmetry 
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Huge FEA models pose no problem for the projected subgradient implementation. The initial 
version of the algorithm was tested using more than 10 million variables with no issues noted. 
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