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1 Introduction 
Parameter estimation is a considerably large application area of optimization. It fulfills the important 
purpose of characterizing materials based on models available in Finite Element analysis software 
such as LS-DYNA®. The development of special LS-OPT® features for parameter estimation using 
Digital Image Correlation and other experimental methods has been ongoing for a number of years. In 
earlier papers [1,2] some of the available similarity measures as well as the LS-OPT DIC methodology 
were discussed in broad detail and illustrated with examples.  
 
The existing similarity measures available in LS-OPT are the Euclidean norm (historically known as 
Mean Squared Error) [7], Partial Curve Mapping (PCM) [3], Discrete Fréchet (DF) [2] and Dynamic 
Time Warping (DTW) [2]. PCM was introduced to address hysteresis and partial curves (in which the 
lengths are not comparable) with some success, except that noisy curves rendered the method 
ineffective. Subsequently, DF and DTW, which were invented to compare curves end to end, were 
implemented to address noise. They did so effectively as long as the curves being compared were of 
comparable length (with respect to the range of the ordinate and abscissa). 
 
Unfortunately, in practical situations, curves are typically not of comparable length. While the test 
curve available from experimental data can be edited to any desirable length, the computational 
curves produced in the optimization cycle cannot, or can only be edited with difficulty. Examples are 
as follows: 
 

1. A tensile test in which the coupon fractures at some point but then the analysis continues to a 
fixed termination time with the only response being the oscillation of the fractured remnants.  

2. An example in which only a part, e.g. post-yield, of a curve needs to be matched.  
 
While the PCM method is available for addressing curve partiality, the method has trouble with noisy 
curves because of its inherent property of using the arc length as a means of traversing the curve. 
 
A search for matching methods able to address curve partiality, in combination with other properties 
such as noise and hysteresis, was recently incorporated as part of a Master's thesis study [5]. The 
study found that the Time-Warped Longest Common Subsequence (T-WLCS) method [6] is a 
prominent approach to partial curve comparison. Based on T-WLCS, the points of simulation and test 
curves are traversed and labeled as a match whenever the points are within an 𝜀𝜀-range of each other.  
In doing so, a percentage of mismatch between the curves is calculated. The curve(s) with the lowest 
percentage of mismatch with respect to the experimental curve are determined and, if necessary, 
appropriately truncated.  
 
As the percentage of mismatch is dependent on the matching threshold 𝜀𝜀, more than one curve may 
have the lowest percentage of mismatch. To address this issue, a hybrid method was proposed [5] in 
which the second step consists of passing these (potentially truncated) matches to the DTW distance 
method in order to determine the (partial) computed curve that best matches the experimental data. 
The proposed hybrid measure does not require aligned 𝑥𝑥-values and allows matching one point from a 
curve to multiple points on the other. In contrast to measures such as DF and DTW, the proposed 
hybrid measure does not require all points on both curves to be matched, which yields an automated 
truncation, whenever there is noise or different curve lengths. 
 
In addition to the hybrid method, a truncation method, which relies on knowledge of the application as 
well as a direct minimization of T-WLCS, is also investigated in this study.  
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The final part of the study is devoted to applying the theory to an example of a tensile test which 
includes noise and partiality as phenomena. The simulation data for this example is obtained by 
means of the finite element software LS-DYNA using the GISSMO damage model. Experimental data 
from a tensile test are used to identify seven material parameters of the model. The example exhibits 
both noise and mismatch of the curve length due to an uncertain termination point caused by 
oscillation after fracture. Three scenarios for addressing the partiality problem are investigated.     
 

2 Theory of the Time-Warped Longest Common Subsequence method (T-WLCS) 
The T-WLCS method is based on the Longest Common Subsequence (LCS) method, however it 
includes the time-warping property of DTW. As opposed to the original LCS, which was merely able to 
consider one-to-one or one-to-none matchings, this characteristic enables T-WLCS to additionally 
consider one-to-many matchings.  
 
The basic idea is to traverse both curves and match those points which are within an 𝜀𝜀-range of each 
other. In this manner, the method counts how many points of one curve could be matched, i.e. are 
similar, to the other. The reference and computational curves are first pre-processed by scaling both 
with respect to the reference (test) curve. 
 
Mathematically, this number of matching points between two curves, say 𝐴𝐴𝑛𝑛 = (𝑎𝑎1, … , 𝑎𝑎𝑛𝑛) and 
𝐵𝐵𝑚𝑚 = (𝑏𝑏1, … , 𝑏𝑏𝑚𝑚), is calculated via the following recursive formula, based on the papers by Guo and 
Siegelmann [6] and Mai et al. [9], 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝛿𝛿,𝜀𝜀(𝐴𝐴𝑛𝑛,𝐵𝐵𝑚𝑚) =  

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0   𝑖𝑖𝑖𝑖 𝐴𝐴𝑛𝑛 𝑜𝑜𝑜𝑜 𝐵𝐵𝑚𝑚 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,
 

 
1 + 𝑒𝑒𝑎𝑎𝑥𝑥�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝛿𝛿,𝜀𝜀(𝐴𝐴𝑛𝑛−1,𝐵𝐵𝑚𝑚−1),𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝛿𝛿,𝜀𝜀(𝐴𝐴𝑛𝑛,𝐵𝐵𝑚𝑚−1),𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝛿𝛿,𝜀𝜀(𝐴𝐴𝑛𝑛−1,𝐵𝐵𝑚𝑚)�   

𝑖𝑖𝑖𝑖 ��𝑎𝑎𝑥𝑥,𝑛𝑛 − 𝑏𝑏𝑥𝑥,𝑚𝑚�
2 + �𝑎𝑎𝑦𝑦,𝑛𝑛 − 𝑏𝑏𝑦𝑦,𝑚𝑚�

2 < 𝜀𝜀 𝑎𝑎𝑎𝑎𝑎𝑎|𝑎𝑎 − 𝑒𝑒| ≤ 𝛿𝛿
   

max�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝛿𝛿,𝜀𝜀(𝐴𝐴𝑛𝑛−1,𝐵𝐵𝑚𝑚),𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝛿𝛿,𝜀𝜀(𝐴𝐴𝑛𝑛,𝐵𝐵𝑚𝑚−1)�     𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒.

   

 
Assume 𝐴𝐴𝑛𝑛 to be the experimental curve, which we wish to match. Upon obtaining the number of 
matching points, i.e. the length of the simultaneously calculated partial curve 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, a percentage of 
mismatch between the curves can be calculated via  

𝑎𝑎𝑖𝑖𝑖𝑖𝑒𝑒(𝐴𝐴𝑛𝑛,𝐵𝐵𝑚𝑚) = 1 −
𝑒𝑒𝑒𝑒𝑎𝑎�𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
𝑒𝑒𝑒𝑒𝑎𝑎(𝐴𝐴𝑛𝑛) . 

The above recursive formula for 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝛿𝛿,𝜀𝜀 contains two variables, which require some further 
investigation, namely 𝜀𝜀, also referred to as the matching threshold, and 𝛿𝛿, also referred to as the time 
constraint. As is suggested in the literature [10], we want to use a fraction of the length (number of 
points) of the experimental curve for 𝛿𝛿, i.e.  

𝛿𝛿 = 𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑎𝑎(𝐴𝐴𝑛𝑛). 
Here, 𝑎𝑎 represents a user-definable 𝛿𝛿-fraction. 
 
For the matching threshold, which creates an 𝜀𝜀-circle around the points to be matched, we want to 
consider the standard deviation of the curves on the 𝑥𝑥- and 𝑒𝑒-axis to obtain a reasonable radius. We 
base this threshold on the data of the experimental curve, resulting in a consistent value throughout 
the data set. We define 𝜀𝜀 as  

𝜀𝜀 = 𝑖𝑖 ∙ 𝜎𝜎𝑥𝑥+𝜎𝜎𝑦𝑦
2

 , where 𝜎𝜎𝑥𝑥 = � 1
𝑛𝑛−1

∑ �𝑎𝑎𝑥𝑥,𝑝𝑝 − 𝑎𝑎𝑥𝑥����
2𝑛𝑛

𝑝𝑝=1 ,    𝑖𝑖 ∈ [0,1]. 

In this formulation, we let a point in 𝐴𝐴𝑛𝑛 be defined as 𝑎𝑎𝑝𝑝 = �𝑎𝑎𝑥𝑥,𝑝𝑝 , 𝑎𝑎𝑦𝑦,𝑝𝑝� and let 𝑎𝑎𝑥𝑥��� denote the mean over 
all 𝑥𝑥-values in 𝐴𝐴𝑛𝑛. Further, 𝜎𝜎𝑦𝑦 is the standard deviation over the 𝑒𝑒-values of the experimental curve, 
i.e. defined similarly to 𝜎𝜎𝑥𝑥. By 𝑖𝑖 we denote the 𝜀𝜀-fraction, which may be adjusted by the user. 
 
Figure 1 shows the effect of changing the 𝜀𝜀-fraction value of the T-WLCS measure. 
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Fig.1: Truncated curves resulting from the T-WLCS mapping of a computational curve on to an 
experimental curve (𝑥𝑥) for 𝜀𝜀-fraction values 0.025, 0.05, 0.1, 0.2 and 0.4. The smooth, straight 
line edges represent shortcuts (or truncations) of the part of the curve which falls outside the 𝜀𝜀 
range. All points fall within the 0.4 range of the 𝜀𝜀-fraction (turquoise) (hence T-WLCS=0) but 
with a tightening of 𝜀𝜀, the curves are progressively truncated. The resulting T-WLCS values are 
respectively 0.415, 0.39, 0.37, 0.275, 0 while the corresponding DTW distance values are 
0.146, 0.0365, 0.0358, 0.0330, 0.0339. Note the shortening of the tail as the 𝜀𝜀 value is 
reduced. (LS-OPT). 

3 Implementation 
The T-WLCS function was implemented in LS-OPT as TWLCSHistory and TWLCSMultiHistory with 
the reference curve (from experimental data), computational curve (typically a crossplot) and the 𝜀𝜀-
fraction and 𝛿𝛿-fraction as input. Using TWLCSMultiHistory, the methodology can also be applied to 
calibration when using Digital Image Correlation (DIC) [1]. The curves are normalized to the reference 
curve before applying the mapping. The resolution of the T-WLCS mapping can also be increased by 
specifying the number of points required. The methodology was implemented in a development 
version destined as LS-OPT Version 6.1. 

4 Example 
The example represents a tensile test of which experimental results are available and which was 
modelled using the GISSMO material model in LS-DYNA [8]. The response of the GISSMO model is 
noisy since, in combination with the element erosion feature in LS-DYNA, it constitutes a discrete 
method in which the elements typically fail progressively until the two ends of the coupon are 
detached. The oscillation of the detached ends can be seen in the first columns of Figures 2 and 3 and 
also at the top of Figure 4. 
 
Three main approaches are followed using the distance measures Dynamic Time Warping (DTW) and 
Time-Warped Longest Common Subsequence (T-WLCS). 
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 Full Truncated part 

(A) 
Standard 
truncation 

+ 
Min. DTW 

  

(B) Min. T-
WLCS 

  

(C) T-
WLCS + 
Min.DTW 

  
 
 

Fig.2: The table represents all the points (each with a unique set of parameter values) used in the 
optimization and compares computational curves with experimental results (𝑥𝑥). The first row 
represents (A) the standard truncated curve at a specified level to which the DTW measure is 
applied, the second row represents (B) the minimization of the T-WLCS value and the third 
row represents (C) the proposed hybrid method in which the curve is truncated using the T-
WLCS method followed by applying DTW to the truncated curve. The first column represents 
the full curves, up to termination of the simulation, whereas the second column represents the 
truncated curves as they were used to compute the DTW measure (only relevant in 
formulations A and C). The plots have been color-coded to represent the objective function for 
each formulation. (LS-OPT). 
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 Full Part 

(A) 
Standard 
truncation 

+ 
Min. DTW 

  

(B) Min. T-
WLCS 

  

(C) T-
WLCS + 
Min.DTW 

  
 

Fig.3: The table represents the final optimum point resulting from the optimization and compares the 
computational curve with the experimental result (𝑥𝑥). The first row represents (A) the standard 
truncation formulation with minimization of the DTW measure, the second row represents (B) 
the minimization of the T-WLCS value and the third row represents (C) a hybrid method in 
which the curve is truncated using the T-WLCS method followed by applying DTW to the 
truncated curve. The first column displays the full curve, up to termination of the simulation, 
whereas the second column displays the final truncated curve as used to compute the DTW 
measure (only relevant in formulations A and C). 

 
 
The main approaches are described as follows: 
 

(A) In this formulation the computational curve is truncated at a specified level (seen in the 2nd 
column of row 1, Figures 2 and 3) determined by the end of the experimental force-
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displacement curve. DTW represents the distance between the truncated curve and the 
experimental curve. T-WLCS was not used in this formulation. 

(B) The T-WLCS (𝜀𝜀-fraction = 0.05) value is minimized. The minimization forces the curve to be 
as complete (or full) as possible within the 𝜀𝜀 bounds. A tight value of the 𝜀𝜀-fraction was chosen 
to force the computational curve as close as possible to the experimental curve. (An analysis 
with 𝜀𝜀-fraction = 0.1 was investigated separately ― see Figure 4). 

(C) The computational curve is truncated by the T-WLCS (𝜀𝜀-fraction=0.1) method. DTW 
represents the distance between the truncated curve and the experimental curve. 

 
The Genetic Algorithm with population size = 50 and generation limit = 100 was used to find the 
optimal curves. Figures 2 and 3 are explained in their respective captions. 
 
Table 1 shows a comparison of the optimal parameters computed using the three formulations. 
Notable is that the standard truncation results in the smallest distance value, likely because the 
standard truncation is more accurate than the automated one using T-WLCS. 
 

 (A) Standard 
truncation + min. DTW  

(B) Min. T-WLCS (𝜀𝜀-
fraction = 0.05) 

(C) T-WLCS + min. 
DTW (𝜀𝜀-fraction = 0.1) 

a 3.1 2.2 1.4 
b 3.0 7.6 8.1 
c 0.21 0.69 3.7 
d 0.37 0.44 0.35 
e 1.1 1.3 2.3 
f 0.42 0.37 0.30 
g 0.46 1.7 2.0 

T-WLCS 0 0.0049 0.0155 
DTW(truncated) 0.00256 0.00545 0.00556 
DTW(T-WLCS) 0.00340 0.00506 0.00534 

GA No. 
generations (10% 
repeat termination) 

47 31 98 

Table 1: Comparison of the optimal parameters and curve matching measures obtained using the 
three optimality formulations. The relevant objective function values are in bold italics. 

To align with the 𝜀𝜀-fraction value of 0.1 chosen for Formulation C, 𝜀𝜀-fraction = 0.1 was also applied to 
Formulation B (min. T-WLCS value). This required only 3 GA generations (although 13 generations 
were required to establish convergence) which led to multiple feasible solutions being available as 
demonstrated in Figure 4. A more detailed description is given in the caption. 
 

5 Observations 
All three methods yielded good results with all optimal DTW values based on the partial curves less 
than 0.006. Hence a closer inspection is warranted. 
 
When minimizing T-WLCS (B), it is clear from the purple band in Figure 4, that many feasible, near 
optimal, solutions can be obtained by choosing a large 𝜀𝜀 value. It is therefore a little surprising that the 
T-WLCS = 0 solution was not also obtained for the optimum in Case C. Apparently there are curves 
with non-zero T-WLCS which have smaller DTW values than curves with vanishing T-WLCS values. 
Further investigation into this aspect will be discussed in the presentation. 
 
Assuming a small 𝜀𝜀-fraction value, a successful match to a partial (T-WLCS) curve is expected to have 
a T-WLCS value close to 0 as well as a small DTW value. This correlation between T-WLCS and DTW 
was actually computed for the runs conducted for this example and found to be close to 0.9.  
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Fig.4: Formulation (B) (Min. T-WLCS) with 𝜀𝜀-fraction = 0.1. The two figures represent all the points 
used in the optimization and compares computational curves with experimental results (x). The 
top row represents the full curves, up to termination of the simulation, whereas the bottom row 
represents the truncated curves. The color represents the T-WLCS value. The purple band 
represents all feasible solutions (T-WLCS = 0) for this formulation (Figures from LS-OPT). 
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6 Conclusions 
After having addressed, and in many cases solved, the idiosyncrasies of curve comparison, such as 
hysteresis and noise, as part of earlier research efforts, a new study was conducted to explore an 
automated method for addressing the comparison of curves with significant differences in curve 
lengths. This is defined as the partial curve comparison problem and may occur due to distinct ranges 
of testing and computation or due to noise or spurious effects. The study is mainly motivated by the 
fact that the standard distance measures such as Discrete Fréchet and Dynamic Time Warping fail 
when applied to curves with significantly different lengths.  
 
A pitfall of the T-WLCS minimization method (Formulation B) is the difficulty of choosing a suitable 𝜀𝜀 
value. A large value of 𝜀𝜀 is bound to allow spurious data, such as the oscillating tail, to be partially 
ignored and may, as demonstrated, also find multiple solutions with the same zero T-WLCS value. 
Choosing a value which is too small may distort the actual curve due to gaps, thereby artificially 
inflating the DTW distance value. In spite of this uncertainty, this preliminary study seems to confirm 
that an 𝜀𝜀-fraction value in the range [0.05,0.1] is a reasonable choice for this application. A parametric 
study, as a well as a more comprehensive set of examples, would be required to further investigate 
this generalization. 
 
The preliminary results presented using this example show that although the automated, T-WLCS-
based method succeeds in identifying the relevant curve segment which best matches the 
experimental curve, a simple method in which the curves are truncated in a more conventional manner 
is also successful. In this case, the ability to map the ends of the experimental curve to the 
computational curve is required. This approach may be simple for this particular example, but may not 
always be as obvious, such as when experimental data is only available over a limited range. In that 
case the T-WLCS approach holds great promise to be effective. 
 
Further work will include more comprehensive parametric studies, a variety of time-ranges of 
experimental data as well as newer and more complex applications such as Digital Image Correlation. 
Using T-WLCS with DIC data and multi-point histories (with the TWLCSMultiHistory function) is 
already possible with LS-OPT Version 6.1 (the current development version). 
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