
12th European LS-DYNA Conference 2019, Koblenz, Germany 
 
 

 
© 2019 Copyright by DYNAmore GmbH 

Load Case Preference Patterns based on 
Parameterized Pareto-Optimal Vehicle Design 

Concept Optimization 

Satchit Ramnath1, Nikola Aulig2, Mariusz Bujny2, Stefan Menzel2, Imtiaz Gandikota3, Kurtis Horner4 

1SIMCenter, The Ohio State University, Columbus, Ohio, USA  
2Honda Research Institute Europe GmbH, Offenbach/Main, Germany 

3LSTC, Livemore, California, USA 
4Honda R&D Americas Inc., Raymond, Ohio, USA 

Abstract 

Classical Topology Optimization (TO) methods aim to optimize the distribution of material within a 
design space for one given objective function and constraints. However, in the vehicle design process, 
there are many different load cases and several different objectives. Among them maximizing stiffness 
of components for regular working conditions, and maximizing energy absorption in exceptional 
loading conditions, for instance in crash events, are important. Recently, the Scaled Energy Weighting 
Hybrid Cellular Automata (SEW-HCA) [1], [2] method was adopted in LS-TaSC™. The SEW-HCA is a 
practical multidisciplinary TO approach for devising concept structures based on the intuitive choice of 
preferences leading to the desired trade-off between crash performance and stiffness. In this paper, 
we propose an integration of the SEW-LS-TaSC method into LS-OPT® to perform a design of 
experiments (DOE) on the load case preference parameters. The integration into LS-OPT® results in 
a convenient user interface that facilitates application in an industrial development process with non-
expert users. This integration enables quick studies on many different concept designs based on 
preference samples generated by the DOE. The results from the sensitivity analysis provide data for a 
better understanding of the influence of load case preferences on the design space. By comparing the 
performance of structures obtained for different load case preferences, the user will be able to find a 
desired trade-off solution within the concurrent optimization runs. For further development, the 
proposed LS-OPT® workflow can potentially include 1) NVH load cases as additional discipline and 2) 
optimizations of other topology optimization hyperparameters for further concept exploration. 

1 Introduction 

 
During the last years, the design process in the automotive industry has been changing very 
dynamically. In particular, due to the rising material costs, stringent CO2 emission targets and a strong 
competition on the market, the car companies have to substantially shorten the production cycles to 
widen the spectrum of vehicles as well as to develop and manufacture in a more efficient way [3]. In 
order to achieve these goals, numerical simulation and optimization methods have to be used. In the 
context of the early phases of the product development process, Topology Optimization (TO) is one of 
the most promising approaches for providing the designers with novel structural concepts. 
 
TO is a mathematical method used to optimize the material layout within a defined design space, for a 
given set of boundary conditions like loads or supports. With the rising complexity of the cars, these 
methods have to take into account different, very often conflicting performance goals, coming from 
various disciplines, including structural statics, vehicle dynamics, crashworthiness or NVH (noise, 
vibration, harshness). In some cases, e.g. for structural statics or vibration problems, very efficient 
gradient-based TO methods exist [4][5][6][7] and are widely used across different industries. In 
contrast, design for crashworthiness poses severe difficulties due to complexity of the crash 
phenomena, which prohibits efficient computation of analytical gradient information and requires 
development of alternative methods [8][9][10][11][12][13][14][15]. One of the approaches very 
successful in optimization for both crash and statics is the Hybrid Cellular Automata [12], which is a 
numerically efficient method mimicking the bone remodeling process. An algorithm inspired by HCA 
was implemented in LS-TaSC™ [16][17][18] and further developed, showing a great potential to solve 
real-world TO problems [1]. 
 
Although the development of TO methods for each of the above mentioned disciplines is very active, 
relatively little research was done on multidisciplinary TO, which is crucial for the development of the 
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future vehicle concepts. One of the first approaches addressing concurrent TO for static and crash 
loads was the Scaled Energy Weighting – Hybrid Cellular Automata (SEW-HCA) method  [[2], which 
has been successfully used in the optimization of the real-world BIW structures [2], taking into account 
several static and crash load cases. SEW-HCA allows for exploration of the solutions balancing   
conflicting optimization objectives like minimum compliance to safeguard the cabin and protect the 
passengers, and maximum energy absorption by structures in extreme events such as a crash. The 
SEW-HCA method has been successfully applied in the past [19],[20], to generate concept designs of 
complex structures. 
 
In case of the Multidisciplinary Design Optimization (MDO) [21], a single solution optimizing all of the 
objectives simultaneously usually does not exist. As a consequence, one is interested in finding a set 
of solutions, called Pareto front, where each design can be improved in one of the objectives only by 
decreasing the performance in the other ones. Since each of the solutions on the Pareto front is 
equally good, the designers have to make the choice which design to use based on their individual 
preferences. As a result, the ability to explore different options, compare the design concepts and 
analyze trade-offs between the relevant design criteria becomes crucial for the overall process. 

In the current paper, we demonstrate the extension of the SEW-HCA by using the recent 
advancements in the LS-TaSCTM. To distinguish between the methods, we refer to the latter as SEW-
LS-TaSC. In order to explore different design concepts, we present a workflow created in LS-OPT® 
5.2.1, which uses SEW-LS-TaSC implemented in LS-TaSCTM 4.0. Such an integration allows the user 
to use the capabilities of LS-OPT® to perform Design of Experiments (DOE) on the preferences 
determining the weight or importance of each load case. As a result, different design concepts are 
devised and the solutions reflecting the best preferences of the designer can be easily selected. 
Various trade-off solutions, compromising stiffness and energy absorption, can be explored using an 
intuitive graphical user interface of LS-OPT®. The implementation of the workflow is very 
straightforward and allows the designers for an efficient utilization of the multidisciplinary TO methods 
in industrial scenarios. The workflow presented in the paper can be easily extended by adding more 
load cases or by integrating new disciplines, e.g. NVH. 

The paper is organized as follows: In section 2, we describe the SEW method. In section 3, we 
present the implementation of the workflow to automate the SEW-LS-TaSC method in commercial 
LSTC software. Section 4 illustrates a case study using a beam model, along with results and 
discussions. Section 5 provides the conclusion of the paper. 

2 Topology Optimization based on Load Case Preference 

The work presented in this paper is further development of the SEW-HCA optimization algorithm [1] for 
more convenient industrial application and extended parameter design concept and performance 
studies. The SEW method allows solving for multiple objectives like minimum compliance and energy 
absorption concurrently for various load cases. The SEW method is briefly discussed below. 

2.1 Scaled Energy Weighting 

In TO, the target is to find the optimal material distribution within a two or three-dimensional design 
space or design domain. The density of each finite element of the discretized design domain is an 
optimization variable, i.e. the optimization assigns a density variable that controls the material 
properties within the element. In such density-based topology optimization algorithms a power law 
approach according to the well-known SIMP approach [5] is applied: 

௜ሻߩ௜ሺܧ                                                                     ൌ ௜ߩ	
௣ܧ଴,                                                                 (1) 

where ݅ߩ ϵ [0,1], is the density of element i, 0ܧ is the Young's modulus of the full material and p is a 
penalization exponent (in this case the default value of 3 is assigned) and ݅ = 1 … ܰ are the indices 
of the elements. In typical mathematical optimization approaches the densities are iteratively updated 
based on the sensitivities of the objective function with respect to the densities, hence gradients are 
used by a mathematical optimizer. Other approaches such as the Hybrid Cellular Automata (HCA) 
approach have the capability to address certain types of crashworthiness TO problems. They use 
heuristic material distribution based on field variables aiming for uniform energy distribution and a 
control based update-rule. 
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The Scaled Energy Weighting was developed originally for the Hybrid Cellular Automata algorithm to 
balance the energy field variables of multiple crash and static load cases (SEW-HCA) [1, 2]. For the 
kind of problem addressed by SEW-HCA the field variables are usually the strain or internal energy 
densities of the elements. However the SEW approach is independent of the concrete optimizer use. 
In the following ܵ݅l may represent design update information such as field variables or mathematical 
sensitivities of element i and load case l depending on the optimizer. This update information is 
combined for all elements before the update by the optimizer as proposed in [1]: 

  
                                                             ௜ܵ ൌ 	∑ ௟ݓ ௜ܵ௟

௅
௟ୀଵ ൌ 	∑ ௟ߩ

ଵ

ௌ೗
௜ܵ௟

௅
௟ୀଵ ,                                                (2) 

with the number of load cases L, a weight ݈ݓ for each load case. For intuition, the SEW approach 
refactors the weight ݈ݓ in a user-defined preference factor ݈݌ and a scaling factor S݈. This refactoring 
enables to separate the task of scaling each of the load cases to the same level from the task of 
expressing how important the load case is for the user, hence the preference factor. 

In the previous work where typically the compliance subject to static loads or the energy absorption 
subject to crash loads were optimized by SEW, good results were obtained for the following scaling 
factor: 

                                                                      ௟ܵ ൌ
௪೗

௪೘೔೙
,                                                                     (3) 

where wl = ΣNi=1 ܵil is the work of the structure obtained from the analysis of the load cases within the 
initial iteration of the TO. Except for the constant factor wmin (which is irrelevant for typical optimizers) 
this is equivalent to an L1 norm on the update variables. Such a scaling applied to gradients is also 
part of the projected sub-gradient (PSG) optimization method available in LS-TaSC 4.0 as described 
in equation (9) in [22]. Hence the central idea of the SEW method is available as part of the provided 
PSG algorithm in LS-TaSC 4.0 and can be readily applied. An additional improvement is that the 
scaling in the available method happens every iteration and could potentially achieve the most 
stringent balance of the load cases.  

3 Integration of LS-TaSC© 4.0 with SEW-LS-TaSC & LS-OPT® 5.2.1 

The following setup describes the SEW-LS-TaSC setup for a two load case example. A multi-stage 
setup was used in LS-OPT 5.2.1 with one stage for the LS-TaSC simulations and the second stage for 
running LS-DYNA simulations on the optimized design(s). The LS-OPT performs a DOE on the 
preference parameters before running the optimization simulations. The LS-OPT setup is shown in the 
Figure 1 below. The scaling of the preference parameters occur within LS-TaSC 4.0 using the PSG 
method described briefly in the previous section. 

 

Fig.1: LS-OPT setup for SEW-LS-TaSC workflow 
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The LS-OPT setup consists of a DOE task with an LS-TaSC stage to run TO for different load case 
weights, and lower LS-DYNA stages, opt_LC1 and opt_LC2 (as shown in Figure 1), to run final LS-
DYNA analysis of the optimized designs generated in LS-TaSC. Since LS-TaSC is not available as a 
solver package in LS-OPT v5.2.1, a user-defined solver type is used. 

In this paper, full factorial design is used to sample user-preferences and weights, for the two load 
cases. These factorial designs are transferred to the LS-TaSC simulations. "Global variables" (load 
case weights) defined in LS-TaSC input file are read as design parameters for LS-OPT and 
constraints defined in LS-TaSC are directly extracted as LS-OPT parameters. The implementation of 
this step is illustrated in Figure 2. Finally, the responses extracted from the optimized topology designs 
of the two load cases can be visualized as a Pareto front in two-dimensional space, with user-
preferences being the variables. 

 

Fig.2: Parameters Setup in LS-OPT 

4 Case Study on Cantilever Beam 

In this paper, the method described to utilize the SEW-LS-TaSC method in LS-OPT® is demonstrated 
using a beam model. The beam model, optimized for two conflicting objectives (minimum compliance 
and maximum energy absorption) in two load cases, is discussed in detail below. The finite element 
model is developed in LS-DYNA® keyword format. The static load case is analyzed using the implicit 
solver while the load case for energy absorption is solved using the explicit solver in LS-DYNA®. The 
material model used in this analysis is a piecewise linear elastic-plastic material. 

4.1 Model Setup 

The beam model is setup as a simply supported beam problem with two load cases. Figure 3 shows 
the constraints used for setting up the model used in the paper. The design space of the beam model 
contains 12,000 voxel elements as shown in Figure 4. A target mass fraction of 0.3 is set along with a 
move limit of 0.1. The results obtained from the optimization run can be used as a starting point for 
further design development process. 

 

Fig.3: Simply Supported Beam 
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Fig.4: Voxelized Beam Model 

 
The first load case is a dynamic crash scenario shown in Figure 5, in which the optimization objective 
is to maximize the energy absorption from the indenter. The cylindrical indenter is forced into the 
beam, along the z-direction, to create significant deformation. The motion of the indenter is defined as 
a linear motion with a constant velocity, until a displacement of 100mm is reached. This is applied 
within LS-DYNA using the BOUNDARY_PRESCRIBED_MOTION card. In the second load case, a 
point static load of 1000N is applied in the y-direction as shown in Figure 6. The optimization objective 
for this case is to minimize compliance. 

 

Fig.5: Dynamic Load Case Setup 
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Fig.6: Static Load Case Setup 

4.2 Simulation Results 

The TO procedure is run for a total number of 20 sampling points and 30 iterations in each LS-TaSC 
optimization. Figures 7 and 8 shows the results obtained when the preference parameters are skewed 
towards one of the load cases. For example, in Figure 7 the preference for crash load case is 0.9 and 
for static is 0.1; the other way round in figure 8 (i.e. 0.9 for static and 0.1 for crash). 

 

Fig.7: Topology Optimization Result for Crash Load Case Dominant Preference (L -> R: Top View, 
Isometric View) 

     

Fig.8: Topology Optimization Result for Static Load Case Dominant Preference (L -> R: Top View, 
Isometric View) 

The effect of preference parameters on the load cases can also be seen in Figures 9 and 10. In Figure 
9 the internal energy for the crash load case: 

a. In the crash dominant scenario, the internal energy is higher since the preference is set at 0.9. 
This requires the beam to absorb maximum internal energy 

b. While in the static dominant scenario, the energy absorption is lower due to the fact that the 
preference parameter for the crash case is 0.1. 
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Fig.9: Overall Internal Energy (N/mm2) of the Beam for Crash Load Case 

Similar results are also shown for the static load case in Figure 10. As observed in the figure, the 
internal energy for the static dominant case is lower, since the objective in this case is to minimize 
compliance (internal energy being directly proportional to the compliance). 

 

Fig.10: Overall Internal Energy (N/mm2) of the Beam for Static Load Case 

4.2.1 Sample Results based on Pareto Front 

The in-built capability of LS-OPT® to perform DOE and produce Pareto front makes it easier to 
analyze the results obtained for various preference values. Figure 11 shows a sample Pareto front 
obtained for the two load cases considered in the case study. Each square in the Pareto front 
corresponds to a particular set of preference values for each load case, generated using the DOE 
method (full-factorial) in LS-OPT. Selecting the data point within an acceptable range of internal 
energies, would give the desired conceptual design. The integration into LS-OPT® results in a 
convenient user interface that facilitates application in an industrial development process with non-
expert users. This integration enables quick studies on many different concept designs based on 
preference samples generated by the DOE. The results from the sensitivity analysis provide data for a 
better understanding of the influence of load case preferences on the design space. By comparing the 
performance of structures obtained for different load case preferences, the user will be able to find a 
desired trade-off solution within the concurrent optimization runs. The resulting Pareto front also 



12th European LS-DYNA Conference 2019, Koblenz, Germany 
 
 

 
© 2019 Copyright by DYNAmore GmbH 

provides a balanced distribution of solutions. It also helps the designer pick the optimal starting design 
since the results do not cluster in certain regions. 

The bottom most and top most points in the Pareto front (Figure 12) represents the designs with static 
dominant and crash dominant preferences respectively. The one in the middle is the design obtained 
for equal preferences to both the load cases. As expected, the optimization algorithm removes 
material from the inside of the beam, making it less stiffer and more energy absorbent, as the 
preference moves from static towards crash. This can be seen in the cross-sections of the beams 
shown in Figure 12. 

 

Fig.11: Pareto Front Obtained from the Optimization for both the Load Cases 

5 Conclusion/Summary 

In this paper, we successfully demonstrated the integration and application of the SEW-LS-TaSC 
method with LS-OPT®. The integration of SEW-LS-TaSC within LS-OPT® makes it readily accessible 
to the industry to include such a method into the development process. The approach can easily be 
extended to a body-in-white (BIW) structure with more than two load cases. Future work includes 1) 
adding a NVH load case to the workflow for BIW structure and 2) optimizations of other topology 
optimization hyperparameters for further concept exploration. 
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