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1 Introduction 

Machine learning is becoming more and more part of our world. Even though most people have so far 
only passively used the possibilities of this technology, e.g. for search queries or product 
recommendations, many have surely already thought about how these new possibilities could support 
their work in the future. 
In this contribution, it is investigated if machine learning is suitable to support the process of material 
characterization. Through deep neural networks it is possible to "learn" nonlinear relationships 
between a set of input values and the corresponding output, also known as labels. As a proof of 
concept, it is examined whether the shape of the yield curve can be predicted based on force-
displacement curves from simulated tensile tests. So, in a first step, a large number of tensile tests are 
simulated which differ in the shape of the yield curve. Here, for the description of the yield curve an 
approach according to Hockett-Sherby was used which provides 4 parameters for the definition of the 
shape. The force-displacement curves of these tests are used as the input and the parameters of the 
yield curve as labels. By considering the entire realistic range of all four parameters, the trained neural 
network should be able to provide the best matching set of parameters for a given force-displacement 
curve. For the prediction, of course, the initial and boundary conditions must be the same when 
generating the force-displacement curve, whether by simulation or in a real test. Of course, all initial 
and boundary conditions as well as all other assumptions and simulation settings are also learned 
from the neural network. Therefore a change of these parameters can for sure worsen the predictions 
considerably and can make a re-learning process inevitable. 
The long-term objective of this method and the vision of this work are to learn the possible spectrum of 
the whole material model in advance in order to be able to finally predict the material properties based 
on only a few experiments with minimal effort. 
 

2 Artificial neural networks 

“Artificial intelligence" (AI) is a domain of computer science that deals with methods of automating 
intelligent behavior and machine learning. Although the term AI is currently clearly overused, the 
availability of large computing capacities has led to a wide range of possible applications of methods 
that can be assigned to AI. 
In the field of machine learning, artificial neural networks are used to map relationships and 
dependencies between certain input and output variables. In addition to the input and output layers, 
neural networks can also have additional intermediate layers, so-called hidden layers. As the number 
of hidden layers and their neurons increases, more complex relationships can be mapped more 
efficiently. Deep learning means that several of these hidden layers are used, however, there is no 
universal definition what the minimum number of hidden layers is. 
In the present case, the artificial neural network is a so-called feedforward neural network (FFNN), 
which does not allow loops. The neurons in the input layer represent the individual input values. 
Subsequently, each neuron of a layer is linked to each neuron of the next layer. Multiplication by 
weights and addition of biases controls the influence of each neuron on the neurons, represented by 
real numbers, of the next layer. Learning the network therefore consists in finding the weights and 
values of the biases in such a way that the values of the output neurons correspond as closely as 
possible to the labels of the data to be learned. 
Since at this point it shall be investigated whether at least parts of the material behavior can be 
predicted by a neural network in the form of individual material parameters, test results labelled with 
the corresponding correct material parameters must be used as input data. Depending on the output, 
classification and regression problems can be distinguished. Since in this case the output is a 
continuous quantity and not a label of discrete classes, this is a regression problem. A gradient 
method is used for the training, which is described in more detail below. 
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Fig.1: Structure of an artificial neural network  

3 Data generation 

The required training data was generated by simulations using a simple finite (shell-) element 
discretization using a standard von Mises plasticity model in LS-DYNA. At this point, the investigated 
simulation runs differ only in the shape of the yield curve which is represented by a Hockett-Sherby 
approach:  

 (1) 

Therein, , , , and  are the four parameters that define the shape of the yield curve. A range 
from 0.1 to 1.0 was considered for all parameters. Afterwards, a full-factorial approach was used to 
obtain parameter sets within the entire range of the parameter space. This means that for each 
parameter its range was covered by  supporting points. In the case of four parameters, this leads to a 
total number of  simulations which had have to be run to generate the input data. Apart from the 
yield curve, a simple *MAT_PIECEWISE_LINEAR_PLASTICITY (*MAT_024) material card was used 
with standard parameters for steel (rho=7.85e-06 kg/mm3, e=210 GPa, nu=0.3). Neither strain rate 
dependence nor failure were considered in this study. 
In order to reduce the time required for the simulations, the geometry of the tensile specimen is 
discretized with 8 elements (see Fig. 2) only. In the context of a feasibility study, this reduction should 
certainly be permissible. 

 

Fig.2: Boundary value problem for data generation 

The data that are actually used as input are the evolution of the force at the intersection S for certain 
displacement values at point A. The same abscissa positions (displacements) were evaluated for all 
training sets. Thereby the distance between the evaluated points was reduced in the area with a 
tendency to higher curvature. This is exemplarily shown in Fig. 3 for one curve. Thus 25 input values 
were identified for each input data set. Each input set was labelled with the four parameters used for 
its calculation. 
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Fig.3: Distribution of data points on the force-displacement curves 

With  a total of 20736 tensile tests were simulated. For performance reasons, all tensile tests 
were calculated in a single simulation run, since for such small examples the initialization time for LS-
DYNA is significant larger than the bare computing time. In this case this would have increased the 
total duration from approx. 12 minutes to more than 12 hours. Unfortunately, however, the high 
number of “*DEFINE_CURVE”s (the yield curves) means that the demand for memory allocation is 
growing linearly with the test number as well, so that for the time being only 12 support points per 
parameter are examined. 

4 Training 

The implementation was completely realized in Python with the help of TensorFlow [1] and Keras [2]. 
These packages make it very convenient to create an artificial neural network and train it on the basis 
of existing data. 
Since the correct output parameter set is known for each input, we speak here of a so-called 
supervised learning. A backpropagation algorithm is used to optimize weights and biases [3][4]. This 
algorithm is a special form of a general gradient method based on the mean square error. 
For this proof-of-concept study, only a small FFNN was used with a single hidden layer consisting of 
10 neurons. Thus, the entire FFNN consisted of 3 layers with 25, 10 and 4 neurons. 
In analogy to the biological equivalent, activation functions are usually used in artificial neural 
networks to represent the activation of a neuron. This function provides the input for each neuron by a 
corresponding mapping of the sum of the outputs of the neutrons of the previous layer. One of the 
most frequently used activation functions is the rectifier 

 (2) 

that was introduced in 2000 by Hahnloser et al. [5]. A unit using a rectifier is also called a rectified 
linear unit (ReLU). ReLU has meanwhile become the most frequently used activation function for 
several applications and has replaced the sigmoid functions, e.g. 

 (3) 

which had previously been widely used. Both activation functions, the ReLU (2) and the sigmoid 
function (3) for a=2 are shown in Fig. 4. 

 

Fig.4: ReLU and sigmoid activation function 
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The weights were initialized by random tensors following a uniform distribution, while the biases start 
at a value of 0. For the training, in other words the search for the optimal values for the weights and 
biases, the optimizer Adam was used. Adam stands for adaptive moment estimation and was first 
published in 2014 by Kingma & Ba [6]. It allows to use past gradients for the calculation of current 
gradients by adding fractions of the past gradients to the current ones, which follows the concept of 
momentum. This optimizer is very popular and widely accepted in practical use for the training of 
artificial neural networks. 
The input data is divided into 90% training and 10% test data. The training itself is only carried out with 
the use of the training data. The test data is used to assess the generality of the "trained" artificial 
neural network. Under certain circumstances, the so-called overfitting can occur if the training data is 
learned too precisely. In this case the error for the prediction of input with slightly different values 
increases. This can be observed if at a certain point in the training the error evolving from predictions 
for the test data increases again (although the error for the training data continues to decrease). Fig. 5 
shows the evolution of the mean squared error of the trainings and test data during training. It is 
possible to average the gradients of a batch of several data points to reduce the effort which leads, in 
some cases, to a more stable convergence. This has turned out to be not very helpful in this particular 
case. About 100 iterations (epochs) were necessary to converge to an optimum. 

 

Fig.5: Evolution of the mean squared error 

5 Validation 

In order to validate the trained network, 81 additional data sets were generated which are not part of 

the training or test data. For this purpose, all four parameters ( , , , ) were combined 
applying values of 0.22, 0.55 and 0.88 in a full-factorial approach. The force-displacement curves were 
calculated for each of these variants and for each curve the four parameters were predicted with the 
help of the trained neural network. Since it is conceivable that different yield curves lead to the same 

force-displacement curves, the predicted parameters ( , , , ) must not be 
compared with the input parameters. Instead, the force-displacement curve must be calculated from 
the predicted parameters again, which can now actually be compared. The entire validation procedure 
is shown in Fig. 6. 

 

Fig.6: Validation procedure 

https://arxiv.org/abs/1412.6980
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The force-displacement curves of six representative examples out of the 81 validation samples are 
shown in Fig. 7. The associated input parameters are listed in Table 1. 

 

Fig.7: Force-displacement curves for exemplary input and corresponding predicted parameter sets 

 

     

(a) 0.22 0.55 0.22 0.22 

(b) 0.55 0.22 0.55 0.55 

(c) 0.88 0.22 0.22 0.88 

(d) 0.22 0.55 0.88 0.22 

(e) 0.55 0.88 0.55 0.55 

(f) 0.88 0.88 0.88 0.88 

Table 1: Exemplary input parameter sets 

The accuracy in the agreement of the curves varies, but is remarkably good in the overall picture. In 
order to better assess the quality of the predictions, the results were further evaluated. For this 
purpose, the mean squared error (MSE) was calculated for each curve:  

 (2) 

Therein  and  are the individual force values of the force-displacement curves from the input 
and output parameter set, respectively. The distribution of the MSEs is shown in Fig. 8, with the 
examples selected above marked accordingly. 
 
 



12th European LS-DYNA Conference 2019, Koblenz, Germany 

 

 

 
© 2019 Copyright by DYNAmore GmbH 

 

Fig.8: Distribution of the MSE of the validation sets 

6 Summary and Outlook 

Obviously, it is possible to reproduce the relationships between force-displacement curves and a 
subset of the material parameters by means of an appropriately trained artificial neural network. 
Although no actual test results were used in this contribution, at least the required parameters for the 
simulatively generated curves could be predicted very well. Ultimately, all possibilities of force-
displacement curves that can be generated by the variation of the parameters in the considered 
ranges are learned during the training. If one can justifiably assume from a material that it can be 
represented by this material model by an appropriate choice of the parameters, then good parameter 
combinations should also be found for real experiments although the artificial neural network was 
trained only on the basis of computer simulations. This fact makes the method seem much more 
interesting. Once a material model has been trained, the best possible parameter combination can be 
predicted immediately by means of real experiments. An important criterion here is, of course, 
compliance with the boundary conditions. In real experiments, these must correspond to the trained 
boundary conditions of the simulation runs. 
In the following only a few of the many possibilities for further development of the method are given: 

 Consider more parameters 

 Other/more parameters of the material model could be considered, such as the modulus of 
elasticity, yield locus definition, strain rate dependence, damage, etc. 

 Examination of hyperparameters 

 Hyperparameters are parameters that are set before the training starts, such as the number of 
hidden layers and their number of neurons, layer properties (initial values, activation function), 
and so on. By varying the hyperparameters, their influence on the predictive quality of the 
trained network can be investigated. 

 More detailed tensile tests 

 By a more realistic sample geometry and its corresponding discretization, more realistic force-
displacement or stress-strain curves can be generated. This would make it possible to predict 
parameters for real material based on actual experimental data. 

In the example presented, no deep neural network was necessary; rather a quite small hidden layer 
was sufficient to adequately map the existing relationships. However, this could change significantly 
with increasing number or deviating selection of parameters and most importantly with an increasing 
model complexity. 
It will be interesting to see how this approach will evolve and how it will take the next steps towards 
the vision of a neural network based material model. 

7 Acknowledgement 

The authors acknowledge the financial support by the Federal Ministry of Education and Research of 
Germany in the framework of AIAx (project number 01IS18048 F). 
 



12th European LS-DYNA Conference 2019, Koblenz, Germany 

 

 

 
© 2019 Copyright by DYNAmore GmbH 

8 Literature 

[1]  Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, 
G.; Isard, M.; Kudlur, M.; Levenberg, J.; Monga, R.; Moore, S.; Murray, D. G.; Steiner, B.; 
Tucker, P.; Vasudevan, V.; Warden, P.; Wicke, M.; Yu, Y.; Zheng, X.: “TensorFlow: A system for 
large-scale machine learning”, 12th USENIX Symposium on Operating Systems Design and 
Implementation (2016): 265-283. 

[2]  Chollet, F.: Deep learning with python, Manning Publications (2018).  
[3]  Goodfellow, I; Bengio, Y.; Courville, A: “Deep learning”, MIT press (2016): p. 196. 
[4]  Rumelhart, D. E.; Hinton, G. E.; Williams, R. J.: “Learning representations by back-propagating 

errors”, Cognitive modeling 5 (3) (1988): 1. 
[5]  Hahnloser, R. H. R.; Sarpeshkar, R.; Mahowald, M. A.; Douglas, R. J.; Seung, H. S.: “Digital 

selection and analogue amplification coexist in a cortex-inspired silicon circuit”, Nature 405 
(2000): 947-951. 

[6]  Kingma, D. P., Ba, J. L.: “Adam: A method for stochastic optimization”, arXiv preprint (2014): 
arXiv:1412.6980. 

 
 
 
 
 


