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1 Motivation 
 
Automotive crash simulations of full vehicle models still constitute a large computational effort which can 
be a major problem for applications requiring a large number of evaluations with varying parameter 
configurations. In some applications, highly similar simulations frequently need to be carried out multiple 
times with only minor local parameter modifications. At the same time, large amounts of numerical 
simulation data increasingly become available in industrial simulation databases as part of the 
progressive level of digitalization of automotive development processes. Data-driven modeling methods 
are an area of active research, aiming to exploit this new “treasure” in order to find interesting patterns 
and accelerate predictions. 
 
In particular, projection-based nonlinear model order reduction (MOR) methods have recently been 
proposed for multi-query scenarios such as parametric optimizations or robustness analyses, and have 
shown promising results in literature [1, 2]. These methods aim to reduce the dimensionality of the 
original finite element model (hereafter referred to as the Full-Order Model, FOM) by finding a low-
dimensional subspace approximation. The classical two-stage approach of nonlinear MOR methods 
shown in fig. 1 consists of a so-called offline stage, which incurs a one-time computational cost overhead 
due to training, and a subsequent online stage during which the generated reduced-order model (ROM) 
can repeatedly be used for rapid evaluations. 
 
Due to the challenging nonlinearities and intrusive implementation, which requires access to parts of the 
finite element solver, hyper-reduced automotive crash simulations are very difficult to implement and 
have not been investigated in literature yet. This work presents a methodology for applying nonlinear 
MOR methods to highly nonlinear impact and crashworthiness simulations, and gives first promising 
numerical results which show that the hyper-reduced models remain numerically stable and are able to 
reproduce the original FOM simulations to a high level of accuracy. We make use of a classical Galerkin 
projection equipped with a cubature-based hyper-reduction of the nonlinear element forces [1, 2]. The 
method is complemented by an eigenvalue-based time step estimation as described in [3] for further 
speed-ups within a multi-query context. We analyze the accuracy and achievable speed-ups for an 
example problem and provide an outlook of necessary future implementation steps and research 
directions in order to apply nonlinear MOR methods to full-scale industrial problems. 
 
 
 
 
 
 
 
 

Fig.1: Workflow visualization of the classical online/offline decomposition of nonlinear MOR methods. 

 

2 Dimensionality reduction via mathematical projection 
 
A crucial step towards constructing a reduced-order model is to find a suitable low-dimensional 
representation of the system’s behavior. This work is concerned with projection-based reduction using 
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a linear subspace basis 𝑽𝑽 ∈ ℝ𝑚𝑚×𝑘𝑘 with orthonormal columns, where 𝑚𝑚 is the number of degrees of 
freedom (DOF) of the FOM, and 𝑘𝑘 ≪ 𝑚𝑚 is the dimension of the subspace. Such a basis 𝑽𝑽 can for 
example be readily obtained using the first eigenmodes of the system as long as the system is linear. 
Even for weakly nonlinear problems, the eigenmodes can be used in combination with modal 
derivatives, joint interface modes, or similar techniques. Crash simulations, however, are strongly 
nonlinear and cannot be appropriately represented within a low-dimensional eigenmode subspace. 
 
The subspace approximation presented in the following relies on existing training simulations of the 
FOM for different parameter configurations, from which the relevant “deformation modes” of the system 
can be extracted. The training simulations are usually considered to be the first part of the offline stage, 
but often existing simulations from previous studies are already available in the industry. Similar 
simulations from slightly different FOMs (e.g. not all parts in common) may also be re-used, but require 
some pre-processing of the results. The method of computing a reduced basis from full-scale training 
data is also known as the method of snapshots [4]. It is based on the singular value decomposition 
(SVD), equivalently known as Proper Orthogonal Decomposition (POD) or Principal Component 
Analysis (PCA). It is known that a matrix 𝑨𝑨 ∈ ℝ𝑚𝑚×𝑛𝑛 can be exactly factored into a left-singular matrix 
𝑼𝑼 ∈ ℝ𝑚𝑚×𝑛𝑛  with orthonormal columns, a diagonal matrix of singular values 𝚺𝚺 ∈ ℝ𝑛𝑛×𝑛𝑛, and an orthogonal 
right-singular matrix 𝒁𝒁 ∈ ℝ𝑛𝑛×𝑛𝑛, i.e. 
 

𝑨𝑨 = 𝑼𝑼 𝚺𝚺𝒁𝒁𝑇𝑇   (1) 
 
Further, it is known that truncating this factorization after a certain singular value 𝜎𝜎𝑘𝑘 yields an optimal 
linear low-rank approximation with respect to the Frobenius and 𝐿𝐿2 norms. The truncated approximation 
of 𝑨𝑨 via the SVD can be written as 
 

𝑨𝑨 ≈ 𝑽𝑽 𝚺𝚺𝑘𝑘𝒁𝒁𝑘𝑘𝑇𝑇.   (2) 
 
where 𝚺𝚺𝑘𝑘 = diag(𝜎𝜎1, … ,𝜎𝜎𝑘𝑘) contains the 𝑘𝑘 first singular values of 𝑨𝑨 in decreasing order, 𝒁𝒁𝑘𝑘 contains the 
first k columns of 𝒁𝒁, and 𝑽𝑽 = 𝑼𝑼𝑘𝑘 contains the 𝑘𝑘 first columns of 𝑼𝑼. Here, 𝑽𝑽 is also called the reduced 
SVD basis of the column space of 𝑨𝑨, with 𝑨𝑨 ≈ 𝑽𝑽𝑽𝑽𝑇𝑇𝑨𝑨. The columns of 𝑽𝑽 are referred to as the “basis 
vectors”. The truncation rank 𝑘𝑘 is either prescribed as fixed or determined via a criterion on the relative 
approximation error, e.g. with respect to the Frobenius norm 
 

𝑘𝑘 = min𝑠𝑠∈Φ 𝑠𝑠,     Φ = �𝑠𝑠 ∈ ℕ,
‖𝑨𝑨 − 𝑼𝑼𝑠𝑠𝚺𝚺𝑠𝑠𝒁𝒁𝑠𝑠𝑇𝑇‖𝐹𝐹

‖𝑨𝑨‖𝐹𝐹
≤ 𝜀𝜀� = �𝑠𝑠 ∈ ℕ,

∑ 𝜎𝜎𝑖𝑖2𝑠𝑠
𝑖𝑖=1

∑ 𝜎𝜎𝑖𝑖2𝑛𝑛
𝑖𝑖=1

≥ 1 − 𝜀𝜀2�.   (3) 

 
The SVD is a versatile tool and can for instance be used to compress graphical images (fig. 1), but also 
numerical simulation data. The data obtained from the training simulations simply needs to be stored in 
a so-called snapshot matrix 𝑨𝑨 ∈ ℝ𝑚𝑚×𝑛𝑛, where each column of 𝑨𝑨 represents an observed deformation 
state of the model during a training simulation, i.e. it contains all degrees of freedom (DoFs) of the model 
which should be reduced in a long flattened vector. In the case of crash simulation and structural 
dynamics, the DoFs consist of the individual nodal displacements and rotations of each node in the 
mesh that is intended to be part of the reduced mesh. The corresponding output from LS-DYNA can 
easily be obtained using the *DATABASE_NODOUT option. 
 
The individual basis vectors, or “modes”, can be thought of as deformation patterns similar to the 
vibration modes of a pre-tensioned Guitar string: the first basis vector describes the most important, 
typically global, deformation shape, while the subsequent vectors describe more and more high-frequent 
deformation patterns. In analogy to an image compression in figure 2, theprocess of snapshot collection 
and reduced basis computation for nonlinear simulation models is visualized in fig. 3. Naturally, strongly 
nonlinear problems with multiple training simulations across different parameter configuration will 
require a larger dimension of the subspace basis in order to be accurately represented.  
 
One drawback of the SVD is its algorithmic complexity for large and detailed simulation models with a 
large number of training snapshots, as is typically the case for nonlinear explicit crash simulations which 
require small time step sizes. The “classical” divide-and-conquer SVD computes the full factorization 
(eq. 1) before truncating it, which scales quadratically with the smaller dimension of the snapshot matrix, 
and linearly with the larger dimension. This is inefficient if one only needs to compute a small number of 
basis vectors (𝑘𝑘 ≪ 𝑛𝑛,𝑚𝑚), and a number of alternative low-rank factorizations have been proposed to 
mitigate the computational costs. In particular, randomized low-rank approximations have been shown 



to be highly efficient for a number of nonlinear structural mechanics simulations. The interested reader 
is referred to [5] for an overview of randomized low-rank approximations, and to [6] for a comparison of 
their performance relative to other methods for nonlinear MOR applications. Incremental SVD or single-
pass randomized SVD methods can be very useful to reduce the memory consumption for very large 
models, or to implement a streaming algorithm. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2: Compression of a 6000 x 4000 pixel color image using a randomized SVD. Each pixel 
       contains three RGB (red, green, blue) color values, such that the image can be represented  
       as a three-dimensional tensor of size 6000 x 4000 x 3. This tensor has been unfolded into two  
       dimensions before computing the SVD. It can be seen that the first basis vectors globally  
       approximate the colors and general shape of the rocks, while smaller details and the spray can  
       only be approximated with a sufficiently high number of basis vectors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: Schematic view of the snapshot matrix SVD for a single training simulation. Further training   
      simulations with different parameters can simply be appended as additional columns, although   
      an alternative pre-clustering of the snapshots for local reduced basis computation can also be 
      beneficial (see [7, 8]). 
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3 Equations of motion and hyper-reduction of the nonlinear element forces 
 
Consider the equations of motion describing a nonlinear problem solved by LS-DYNA 
 

𝑴𝑴𝒙̈𝒙 + 𝒇𝒇𝑖𝑖𝑖𝑖𝑖𝑖 = 𝒇𝒇𝑒𝑒𝑒𝑒𝑒𝑒 ,   (4) 
 
where 𝒙𝒙 ∈ ℝ𝑚𝑚 is the DoF vector containing the nodal displacements and nodal rotations (if any), 𝑴𝑴 is a 
diagonal mass matrix, 𝒇𝒇𝑖𝑖𝑖𝑖𝑖𝑖 denotes the internal forces, and 𝒇𝒇𝑒𝑒𝑒𝑒𝑒𝑒 denotes the external forces. The 
subspace approximation via the reduced basis 𝑽𝑽 now approximates 𝒙𝒙 as 𝑽𝑽𝒙𝒙�, where 𝒙𝒙� ∈ ℝ𝑘𝑘 is the vector 
of the generalized DoFs in reduced space. The equations of motion are thus approximated as 
 

𝑴𝑴𝑴𝑴𝒙𝒙�̈ + 𝒇𝒇𝑖𝑖𝑖𝑖𝑖𝑖 = 𝒇𝒇𝑒𝑒𝑒𝑒𝑒𝑒 ,   (5) 
 
The residual of this overdetermined system is then typically constrained to be orthogonal to the space 
spanned by the reduced basis, which is known as the Galerkin projection, resulting in the equations 
 

𝑽𝑽𝑻𝑻𝑴𝑴𝑴𝑴𝒙𝒙�̈ + 𝑽𝑽𝑻𝑻𝒇𝒇𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑽𝑽𝑻𝑻𝒇𝒇𝑒𝑒𝑒𝑒𝑒𝑒 ,   (6) 
 
Notice that 𝑽𝑽 is typically normalized with respect to the mass matrix, such that 𝑽𝑽𝑻𝑻𝑴𝑴𝑴𝑴 = 𝑰𝑰. In the 
following, we use 𝑽𝑽𝑀𝑀 to denote the mass-orthonormalized version of 𝑽𝑽.  
While these equations are already of a much smaller dimension 𝑘𝑘, their evaluation still requires the 
computation of every single entry of the nodal force vector. This is problematic, because the computation 
of the nodal forces is typically the most costly step in the solution procedure for explicit integration. The 
introduction of a second reduction layer has therefore been proposed, a step which is typically referred 
to as the “hyper-reduction”. Nevertheless, a reduced model described by (6) can, depending on the 
problem, still achieve considerable speed-ups as is, due to typically larger stable time step sizes of the 
reduced model [2, 3, 9]. 
 
One class of hyper-reduction methods attempts to approximate the nodal force vector 𝒇𝒇 (or individual 
contributions to 𝒇𝒇 which are too expensive to evaluate) using another reduced basis – which may also 
be identical to 𝑽𝑽 if no force snapshots are available. These methods then only evaluate 𝒇𝒇 at a few pre-
selected DoFs and try to reconstruct the high-dimensional vector 𝒇𝒇 using this limited information. 
Examples for these methods are Gappy POD (which originally dates back to the completion of gappy 
image data, see [10]), and the Discrete Empirical Interpolation Method (DEIM) [11]. Unfortunately, it was 
found that these methods are often numerically unstable for second-order dynamical systems (see e.g. 
[3, 12]). In practice, we observed that these hyper-reduction methods required a very large number of 
evaluation points to remain stable within the limits of the simulation time, and otherwise produced 
negative volumes or out-of-range velocities within a few time steps. 
 
In the following, we therefore employ a hyper-reduction method based on optimized cubature. This 
method was originally presented within a computer graphics context in [1] and has later been extended 
and introduced to the computational mechanics community in [2]. Optimized cubature methods try to 
approximate the sum of the projected unassembled forces via a set of non-negative element weighting 
factors 𝜉𝜉𝑒𝑒∗. The idea is to optimize the weights such that as many of them are reduced to zero, but a 
prescribed tolerance criterion is still fulfilled. Elements with a zero weight no longer need to be evaluated 
in the hyper-reduced simulations and can therefore be omitted from the online stage computations. The 
set of all elements with non-zero weights is called the reduced mesh. The optimized cubature 
approximation can be formulated as follows [2]. 
 

𝑽𝑽𝑀𝑀𝑇𝑇  𝒇𝒇node = 𝑽𝑽𝑀𝑀𝑇𝑇 �𝑳𝑳𝑒𝑒𝑻𝑻𝒇𝒇𝑒𝑒
𝑒𝑒∈Ω

≈  𝑽𝑽𝑀𝑀𝑇𝑇 � 𝜉𝜉𝑒𝑒∗𝑳𝑳𝑒𝑒𝑻𝑻𝒇𝒇𝑒𝑒
𝑒𝑒∈ΩRM

  

 

  (7) 
 

𝜉𝜉∗ = arg min𝜉𝜉∈Φ‖𝜉𝜉‖0;Φ = {𝜉𝜉 ∈ ℝ𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝜉𝜉𝑒𝑒 ≥ 0, ‖𝑮𝑮𝜉𝜉 − 𝒃𝒃‖2 ≤ 𝜏𝜏‖𝒃𝒃‖2} (8) 
 
Here, 𝒇𝒇𝑒𝑒 denotes the vector of unassembled nodal force (or moment) contributions of the element 𝑒𝑒 to 
its nodes, and 𝑳𝑳𝑒𝑒𝑻𝑻 is the assembly operator which assembles the elemental forces of the element 𝑒𝑒 into 
the correct positions of the global force vector (for details, see [13]). 0 ≤ 𝜏𝜏 < 1 is the tolerance on the 
approximation. Lower values of 𝜏𝜏 will often produce a higher accuracy, but a larger reduced mesh. Ω is 



used to denote the set of all elements which should be considered for reduction, and ΩRM is the set of 
elements which remain in the reduced mesh after computing the element weights (i.e. those elements 
with non-zero weights). The training data matrix 𝑮𝑮 and right-hand side vector 𝒃𝒃 are obtained as 
 

𝑮𝑮 =  �
𝑮𝑮1,1 ⋯ 𝑮𝑮1,𝑁𝑁elem
⋮ ⋱ ⋮

𝑮𝑮𝑛𝑛𝑡𝑡,1 ⋯ 𝑮𝑮𝑛𝑛𝑡𝑡,𝑁𝑁elem 
� , 𝑮𝑮𝑖𝑖,𝑒𝑒 = (𝑽𝑽𝑀𝑀)𝑒𝑒𝑇𝑇𝒇𝒇𝑒𝑒

(𝑖𝑖) 

 

  (9) 

Here, 𝑁𝑁elem denotes the number of elements in the region of the model which should be reduced, and 
(𝑽𝑽𝑀𝑀)𝑒𝑒𝑇𝑇 is the transpose of the restriction of 𝑽𝑽𝑀𝑀 to the rows which correspond to DoFs of the element with 
index 𝑒𝑒. Further, 𝒇𝒇𝑒𝑒

(𝑖𝑖) denotes the 𝑖𝑖-th unassembled training force (or moment) snapshot at element 𝑒𝑒 
which was collected from the training simulations. 
 
As finding the solution of equation (8) is an NP-hard problem [12], a greedy iterative algorithm is typically 
used to compute an approximate solution. Notice that penalty contact forces can in principle be hyper-
reduced analogously, although the contact forces are not subject to hyper-reduction for the numerical 
examples presented in the following. 
 

4 Hyper-reduced simulation of a bumper undergoing a small overlap crash 
 
The described methods are now applied to an example problem. The implementation consists of a 
Python code, which is used to compute the reduced basis, element weights, as well as any other relevant 
information for the model reduction, and a special development interface to the LS-DYNA explicit FEM 
solver (version R9 SMP), which is used to implement the online methods and to export unassembled 
force snapshots from the training simulations. An efficient randomized SVD algorithm is used to compute 
the reduced basis, and an accelerated variant of the sparse non-negative least squares solver is used 
to determine the element weights. More details on the individual steps and algorithms will be provided 
in a forthcoming publication.  
Notice that we have so far implemented the hyper-reduction only for a limited set of element types and 
formulations, and it is not yet possible with the current implementation to perform a hyper-reduction of 
a full car crash simulation. All simulations are carried out on a Linux workstation with an Intel Xeon E5-
2637 v4 3.5 GHz processor and 64 GB of RAM, using four computational threads. 
 
The bumper system model (fig. 4, 5) used as an example problem consists of 51,313 fully integrated 
shell elements (ELFORM 16), and 52,045 nodes. Of these, 28,817 shell elements and 29,498 nodes 
are part of a rigid small overlap crash test barrier, which is constrained not to move in any direction. The 
remaining 22,498 deformable elements and 22,547 nodes are part of the bumper system which is 
impacting the barrier at an initial speed of 21.1 km/h. The average element edge length is 5.3 mm. 
To account for the omitted mass of the rest of the car as well as its rotational inertia about the z-axis, an 
*ELEMENT_INERTIA keyword is used to impose a concentrated nodal mass and inertia on node 
400,000. A piecewise linear plasticity behavior is assumed for the material (figure 6), with a density of 
7,830 kg/m³, a Young's modulus of 200 GPa, and a yield strength of 366 MPa. Material failure is not 
considered. The cross-sections of the bumper and the two crash boxes are rectangular, without any 
additional deformation triggers, and the wall thickness is set to 1.8 mm. Further model parameters are 
summarized in table 1. 
 
 

concentrated 
mass 

concentrated 
inertia 𝐼𝐼𝑧𝑧𝑧𝑧 

initial velocity simulation time bumper cross-
section (𝑙𝑙𝑥𝑥 × 𝑙𝑙𝑧𝑧) 

crash box cross-
sections (𝑙𝑙𝑦𝑦 × 𝑙𝑙𝑧𝑧) 

1.50 t 600 kg m² 21.1 km/h 100 ms 30 mm x 120 mm 63 mm x 120 mm 

Table 1: Parameters of the bumper system small overlap model 

 
All contacts, including self-contact and the contact between the bumper and the rigid barrier, are 
modeled using an automatic single surface penalty contact formulation. Notice that the contact forces 
are not hyper-reduced in this model due to limited access to the source code. However, it has been 
observed by the authors that penalty contact is in such cases often “well-behaved”, in a sense that 



contact forces between a subset of elements of the original contact interfaces are sufficient for the hyper-
reduced simulations. 
 
 

 
 
 

Fig.4: Initial state (t = 0) of the bumper system model and schematic view of the components. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.5: Bumper system reference simulation with the full model, at t=50 ms (a), and t = T = 100ms (b).  
      The crash boxes exhibit folds in multiple places, while the bumper deformation is highly non- 
      linear only in the contact zone close to the barrier, as well as the kink near the right crash box. 
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Fig.6: Yield stress vs. effective plastic strain of the material used for the bumper and crash boxes. 

 
Next, two hyper-reduced models are constructed using 30 basis vectors and hyper-reduction tolerance 
levels 𝜏𝜏 ∈ {0.02, 0.05}. Displacements and rotational DoFs are reduced individually. Rigid parts are left 
unreduced, as they already move within a low-dimensional rigid-body subspace. The resulting reduced 
meshes are shown in figure 7, key statistics are summarized in table 2. Notice that LS-DYNA’s own time 
step control was used for the FOM simulation (TSSFAC = 0.9, no mass scaling), whereas a prescribed 
stable time step size based on the ROM eigenvalues [3] was used for the hyper-reduced models. 
 

Fig.7: Reduced mesh of the hyper-reduced model with k=30, 𝜏𝜏 = 0.02, with selected elements and  
      associated element weights of the forces, as computed by the hyper- 
      reduction sampling and weighting method (magnitude is color-coded). 

 
 
The approximation errors of the reduced-order online simulations are measured using the global mean 
relative error of the nodal displacements of the solution. It is defined by [2]: 
 

𝜀𝜀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≔
�∑ �𝒙𝒙(𝑡𝑡) − 𝑽𝑽𝑀𝑀𝒙𝒙�(𝑡𝑡)�𝑇𝑇�𝒙𝒙(𝑡𝑡) − 𝑽𝑽𝑀𝑀𝒙𝒙�(𝑡𝑡)�𝑡𝑡∈𝑇𝑇𝐸𝐸

�∑ 𝒙𝒙𝑇𝑇(𝑡𝑡)𝒙𝒙(𝑡𝑡)𝑡𝑡∈𝑇𝑇𝐸𝐸

 

 

  (7) 
 

where 𝒙𝒙(𝑡𝑡) at time 𝑡𝑡 denotes the vector containing the nodal displacements of the original FOM, and 
𝒙𝒙�(𝑡𝑡) denotes the reduced displacements of the ROM or hyper-reduced model. 𝑇𝑇𝐸𝐸 is the set of time 
instants at which nodal displacement outputs are generated in the online simulations. 
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Model type number of 
deformable elements 

online simulation 
time (8 threads) 

𝜀𝜀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 
(displacements) 

Original model 22,498 (100 %) 49 minutes n.a. 

Galerkin ROM 
(k = 30, no hyper-reduction) 22,498 (100 %) 27 minutes 0.8 % 

Hyper-reduced model 
(k = 30, 𝜏𝜏 = 0.05) 778 (3.5 %) 5 minutes 2.5 % 

Hyper-reduced model 
(k = 30, 𝜏𝜏 = 0.02) 2,495 (11 %) 9 minutes 1.1 % 

Table 2: Model key figures, including online run time and online errors. 

 

 

Fig.8: Hyper-reduced simulation models (green/blue) and FOM simulation (wireframe) overlaid at  
      the final state (t = 100 ms) and showing a generally good agreement. Notice that a full output  
      for all nodes can easily be reconstructed from the hyper-reduced solution. 

 

5 Discussion 
 
Observing fig. 7, one can see that most sampled elements are located within, or close to, the regions 
where large nonlinear deformations occur, e.g. the bumper zone which comes into direct contact with 
the barrier, the folds of the crash box, or the kink in the bumper. Thus, the hyper-reduction algorithm 
was able to automatically identify the most important regions of the model. It is also interesting that the 
largest element weights are assigned to elements in regions where only very few elements have been 
selected and which do not undergo large plastic deformations. This is related to the fact that these 
elements need to “replace” a larger number of omitted neighboring elements, whereas elements in 

a) k = 30, 𝜏𝜏 = 0.05 

b) k = 30, 𝜏𝜏 = 0.02 



zones of large deformations have retained more neighbors and are therefore mostly assigned smaller 
weights. As expected, the reduced mesh size increases with a larger number of basis vectors (table 2). 
 
 

Fig.9: Accuracy in the approximation of the x- and y-velocities of node 400,000. Subfigures a-b: k = 30,  
      𝜏𝜏 = 0.05, subfigures c-d: k = 30, 𝜏𝜏 = 0.02. 

 
The online simulations first of all revealed that all tested reduced and hyper-reduced models were 
numerically stable. The reduced and hyper-reduced simulations also showed a high level of accuracy, 
especially for 𝜏𝜏 = 0.02, with displacement global mean relative errors of about 1-3 % and a good visual 
agreement with the FOM simulation. The accuracy of the velocity curves of node 400,000 is somewhat 
lower than that of the nodal displacements, as can be seen e.g. from figure 9 (particularly in the second 
half of the simulation). Even without hyper-reduction, the reduced models further achieved online speed-
ups factors of roughly 1.8 due to larger stable time steps compared to the FOM. Hyper-reduction 
achieved online speed-ups of 5.4 to 9.8. 
 
Finally, the hyper-reduction worked well even though the penalty contact forces themselves were not 
subject to hyper-reduction. This is perhaps surprising, because the initial contact forces between two 
interfaces will generally be smaller in the hyper-reduced models due to the “missing” elements. Penalty 
contact seems to be well-behaved in this regard, at least for the type of problem studied. A similar 
behavior has been remarked by [14] in the context of hyper-reduced tire simulations, who also reported 
that in some cases it can be beneficial to adjust the contact penalty parameter for hyper-reduced 
simulations (especially when static training simulations are used and the ROM is not well able to 
approximate the rich contact dynamics). 
 

6 Summary and outlook 
 
This paper discusses data-driven dimensionality reduction of explicit crash and impact simulations, with 
a particular focus on hyper-reduction and intrusive MOR to reduce the computing times with LS-DYNA. 
The method described uses data from training simulations to compute a subspace approximation which 
is able to capture nonlinear phenomena, and employs an optimized cubature scheme based on [1, 2] to 
further reduce the numerical effort. Since the implementation is partly intrusive, modifications of certain 
FE solver routines were implemented using a particular development interface to the LS-DYNA FEM 

c) d) 

a) b) 



code. The workflow also draws from previous work [3, 6], which has addressed questions of the 
scalability of the offline stage to highly detailed industrial FEM models, as well the impact of Galerkin 
and hyper-reduction methods on the stable time step size under explicit time integration. To the authors’ 
knowledge, this is one of the first applications of such model reduction methods within an automotive 
crashworthiness context. 
 
Hyper-reduction was applied to a numerical example problem involving multiple sources of nonlinearity, 
including contact, self-contact, plasticity, and geometric nonlinearities. It could be observed that the 
reduced and hyper-reduced models were able to reproduce the training simulations to a good level of 
accuracy, while providing speed-up factors of 5.4 to 9.8 for the problems studied. Even though the 
contact forces were not themselves subject to hyper-reduction, the penalty contact proved to be well-
behaved for this problem. The results further demonstrated that rigid bodies can also be incorporated in 
this framework, and that hybrid models are possible which restrict the reduction to only part of the model. 
 
While the results look promising, these are only the first steps towards using nonlinear model reduction 
or hyper-reduction methods productively for industrial crash simulations. The influence of various 
parameters on the computing times and resulting accuracies needs to be analyzed in further detail. The 
online accuracy of reduced and hyper-reduced models also remains to be tested for parameter 
configurations other than the training simulations, and further improvements which have been proposed 
in literature could be the subject of future work (e.g. local reduced basis approximations or parameter-
adaptive reduced models). Moreover, hyper-reduction has not yet been implemented for all element 
types. Similar modifications to force assembly routines would be necessary to apply hyper-reduction to 
more complex full-scale automotive crash simulations. 
 
Finally, low-dimensional subspace approximations of automotive crashworthiness models obtained by 
fast and scalable randomized or incremental SVD algorithms can also be of interest for future work in 
the area of non-intrusive model reduction (see e.g. [15, 16, 17]). 
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