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1 Introduction 
Nowadays, strain fields can be experimentally measured with high accuracy through digital image 
correlation (DIC). This kind of measurement is becoming standard when it comes to physical testing of 
materials. The information from such measurements is then often used in the calibration and validation 
of material cards to be later used in LS-DYNA. Especially regarding the prediction of failure, the 
experimentally measured strain fields can be quite helpful. Among several methods for the calibration 
of material cards, one method relies on the direct use of such strains in the definition of the failure 
curve as a function of the stress triaxiality ratio. However, in such method, the triaxiality is usually 
estimated from the simulation of the specimens adopted in the physical tests or, sometimes, it is 
estimated from analytical calculations based on the loading type and on the geometry of the 
specimen. It is however widespread known that the triaxiality typically varies during experiments. 
Therefore, it would be interesting to observe the evolution of the triaxiality throughout the physical test. 
As mentioned before, the typical way of doing this is through the use of numerical simulation to 
perform this task. In this paper, we concentrate efforts in developing a method to estimate the 
triaxiality distribution and evolution using information directly from the DIC measurement. To that end, 
a plane stress state is assumed and the strain ratio is calculated from the measured strains. The 
stress triaxiality ratio is, in turn, a relation between the hydrostatic and the equivalent stress. 
Therefore, in order to calculate the triaxiality from the strain field, a relationship between the strain 
ratio and the triaxiality has to be defined. This is only possible through the consideration of a 
constitutive (i.e., material) model. Typically, the J2-based plasticity model (commonly known as the 
von Mises model, e.g., *MAT_024 in LS-DYNA [1]) is used for this kind of task. However, our research 
on the topic has shown that this assumption may lead to wrong triaxialities even in cases when the 
triaxiality is known beforehand, for instance, in a uniaxial tensile test before necking. This error can be 
significantly reduced if the anisotropy of the material is also taken into account. To that end, we use a 
Hill-based transversely anisotropic material law in order to consider the effect of the anisotropy. After 
some mathematical derivations under the assumption of plane stress, negligible elastic strains and 
proportional loading, it is possible to find a closed-form relation between the strain ratio and the 
triaxiality including the effect of the R value. The results for an aluminum sheet show that the triaxiality 
is much better predicted using the new formula. Using a software dedicated to the evaluation and 
visualization of optically measured strain fields, it should be possible to plot triaxiality fields from 
experimental data that can be later used either for the calibration or validation of a material card. 
Furthermore, this novel technique can also be employed on the development of new specimen 
geometries in order to better assess the stress triaxiality ratios obtained with the new geometry without 
having to first calibrate a material card for that. 
  

2 The stress triaxiality ratio 
The stress triaxiality ratio, or simply “triaxiality”, is a stress state indicator defined as the ratio between 
the pressure and the equivalent stress: 

𝜂𝜂 = − 𝑝𝑝
𝜎𝜎𝑒𝑒𝑒𝑒

  (1) 

The triaxiality is a very useful measure of the stress state if one aims to characterize the fracture 
behavior of a metallic alloy. For plane stress and isotropic materials, the triaxiality alone is enough to 
define any possible stress state (but not its intensity) in respect to fracture characterization [2]. 
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3 Triaxiality estimation based on the von Mises model 
 
In the classical J2-based plasticity model, more commonly known as the von Mises model, the yield 
function is given as 

Φ(𝝈𝝈)  = �3 𝐽𝐽2(𝝈𝝈) − 𝜎𝜎𝑦𝑦 (𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 )  =  0 (2) 

In LS-DYNA, this model can be found for instance in *MAT_024 [1]. The yield function only determines 
whether a material point has reached the elastic limit for a certain strain increment. In order to 
determine how much of the strain increment is elastic and how much is plastic, a flow rule is needed, 
which in the present case reads 

 𝜺̇𝜺𝑝𝑝 = 𝛾̇𝛾 𝜕𝜕Φ(𝝈𝝈)
𝜕𝜕𝝈𝝈

= 3
2
𝛾̇𝛾 𝒔𝒔
𝜎𝜎𝑒𝑒𝑒𝑒 

  (3) 

In the literature, the equation above is also known as the Prandtl-Reuss plasticity law [3]. 
 
Assuming principal directions and a plane stress condition, one has 

�
𝜀𝜀1̇
𝑝𝑝 0 0

0 𝜀𝜀2̇
𝑝𝑝 0

0 0 𝜀𝜀3̇
𝑝𝑝
� = 3

2
𝛾̇𝛾
𝜎𝜎𝑒𝑒𝑒𝑒 

�
𝜎𝜎1 + 𝑝𝑝 0 0

0 𝜎𝜎2 + 𝑝𝑝 0
0 0 𝑝𝑝

� (4) 

Considering only the third component of the plastic strain rate tensor, straightforward algebraic 
manipulations and the use of Equation 1 lead to 

𝜀𝜀3̇
𝑝𝑝 = 3

2
𝛾̇𝛾 𝑝𝑝
𝜎𝜎𝑒𝑒𝑒𝑒 

= −3
2
𝛾̇𝛾𝜂𝜂      →       𝜂𝜂 = −2

3
𝜀̇𝜀3
𝑝𝑝

𝛾̇𝛾
   (5) 

Considering negligible elastic strains and that 𝛾̇𝛾 equals the equivalent strain (valid for the von Mises 
model), the (current) triaxiality can be approximated through 

𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐 ≈ − 2
3
𝜀̇𝜀3
𝜀̇𝜀𝑒𝑒𝑒𝑒

  (6) 

One should note that the original definition of the triaxiality is made by using stress rather than strain 
components (see Equation 1). However, in the general case, local stresses cannot be measured, or at 
least not without making some sort of restrictive assumption like, for instance, considering a constant 
stress distribution along the cross section of the specimen (a condition only met under special 
circumstances). Therefore, Equation 6 presents a very interesting manner of estimating the stress 
triaxiality relying on strain components only. In turn, strains can nowadays be accurately measured 
using optical measuring systems. This means that the stress triaxiality can be actually calculated 
directly from strain fields measured from the data obtained through DIC. 
  
One important restriction has to be noted though: Equation 6 is only valid if, among other important 
assumptions, the physical material behaves close enough to what the von Mises model predicts. If 
not, the calculation is not accurate enough and might lead to misleading values of triaxiality. 
Obviously, the assumption of a plane stress condition also restricts accuracy but, from a practical point 
of view, this assumption may be sufficient for thin structures. It is also worth noting that the von Mises 
model assumes that the material behaves isotropically. Unfortunately, this is in practice rarely the 
case. At the begin of this study, the authors speculated that the error of assuming the material 
behavior to be isotropic would be probably very small for some typical metallic materials used in the 
industry. However, as will be shown later in this paper, it turns out that this effect is more significant 
than expected, or at least under uniaxial tension. 
 
Another important point is that Equation 6 is formulated using strain rates, i.e., the variation of strain 
over time. This stems from the fact that the von Mises plasticity model is formulated in an incremental 
form. In a finite element framework, this means that the von Mises model has to be incrementally 
solved (this is how it is done in LS-DYNA). Therefore, the triaxiality value using Equation 6 should be 
interpreted as the current triaxiality value. However, if one assumes proportional loading (i.e., linear 
strain paths), Equation 6 can be rewritten as 
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𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎 ≈ − 2
3
𝜀𝜀3
𝜀𝜀𝑒𝑒𝑒𝑒

  (7) 

In principle, the simplification given in Equation 7 should only be used for linear strain paths. However, 
if used in the general case of non-proportional loading, Equation 7 can be seen as an averaged value 
of stress triaxiality which can be quite helpful in practical applications.  
 
Finally, it is important to remark that Equations 6 and 7 use the third strain component which, under 
the assumption of plane stress, would be the strain in thickness direction. The measurement of such 
strain can be quite challenging, especially for thin materials, requiring a special experimental setup. In 
order to avoid the measurement of the third strain component, an isochoric behavior can be assumed: 

𝜀𝜀1̇ + 𝜀𝜀2̇ + 𝜀𝜀3̇ = 0     →     𝜀𝜀3̇ = −𝜀𝜀1̇ − 𝜀𝜀2̇  (8) 

For metallic materials, this is realistic when the material is in the plastic regime. Using Eq. 8, the 
equations for the current and average triaxiality can be rewritten as 

𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐 ≈
2
3
𝜀̇𝜀1+𝜀̇𝜀2
𝜀̇𝜀𝑒𝑒𝑒𝑒

 ,      𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎 ≈
2
3
𝜀𝜀1+𝜀𝜀2
𝜀𝜀𝑒𝑒𝑒𝑒

    (9) 

 

4 New method: Triaxiality estimation based on a transversely anisotropic Hill model 
 
As mentioned in the previous section, the estimation of triaxiality using Equation 9 requires that the 
physical material behave isotropically and also according to the von Mises model. As a matter of fact, 
the condition of isotropic material behavior is, in practice, rarely met. Typically, the Lankford parameter 
(or R value) is used to assess the level of anisotropy of metallic sheets. Assuming negligible elastic 
strains, linear strain paths and isochoric behavior, the Lankford parameter can be written as 

𝑅𝑅 = 𝜀𝜀2 
𝜀𝜀3

= − 𝜀𝜀2 
𝜀𝜀1+𝜀𝜀2

 (10) 

If a material exhibits an R value smaller than 1.0, it means that the thinning (strain in the third principal 
direction) is more pronounced than the necking (strain in the second principal direction). Conversely, if 
R is larger than 1.0, the material exhibits more necking than thinning. 
 
In order to include the effect of the R value in the determination of the stress triaxiality, a constitutive 
model which takes this effect into account has to be adopted. In this contribution, we consider a 
simplified orthotropic model based on the model proposed by Hill in 1948 [4]. Hill’s original model can 
be simplified by considering a plane stress state and also only normal anisotropy (i.e., R00= 
R45=R90=R). In fact, this simplified model is available in LS-DYNA in *MAT_037 [1], but could also be 
reproduced in *MAT_036 by setting R00=R45=R90=R and m=2. The yield function is given by 

Φ(𝝈𝝈,𝑅𝑅)  = �𝜎𝜎112 + 𝜎𝜎222 − 2𝑅𝑅
𝑅𝑅+1

𝜎𝜎11𝜎𝜎22  +  2 2𝑅𝑅
𝑅𝑅+1

𝜎𝜎122  �
1
2� − 𝜎𝜎𝑦𝑦(𝜀𝜀𝑝𝑝) = 0 (11) 

The simplified Hill model considers only a single R value, i.e., only a transversal anisotropy is 
considered. In practical terms, this means that only the amount of thinning can be described through 
the single R value. The assumption of a single R value contrasts with R values commonly measured. 
Typically, the R values are different for the different material orientations (i.e, R00≠R45≠R90). From a 
simulation point of view, the use of a constitutive model which considers the effect of the different R 
values is indeed crucial for a general good description of the plastic behavior of the material. However, 
for the purpose of merely estimating the triaxiality from optically measured strain fields, this might not 
be as important, provided one uses the R value of the main loading direction in the experiment. 
 
Similar to the von Mises model, an associated flow rule is adopted 

 𝜺̇𝜺𝑝𝑝 = 𝛾̇𝛾 𝜕𝜕Φ(𝝈𝝈,𝑅𝑅)
𝜕𝜕𝝈𝝈

  (12) 

where the result of the derivative in Equation 12 is omitted here for the sake of simplicity. Although not 
as trivial as for the case of von Mises, it is also possible to derive a closed-form relationship between 
the triaxiality and local strains considering the simplified Hill model. The final equation is given by 
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 𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐 = −2
3
�[(𝑅𝑅+1)2(1−2𝑎𝑎+𝑎𝑎2)+(𝑅𝑅+1)(2𝑎𝑎−𝑎𝑎2−1)+𝑎𝑎2+𝑎𝑎+1]

3(1+𝑎𝑎2−𝑎𝑎) �−𝜀̇𝜀1−𝜀̇𝜀2 
𝜀̇𝜀𝑒𝑒𝑒𝑒𝑒𝑒

�  (13) 

where 

𝑎𝑎 = 𝑅𝑅+(𝑅𝑅+1)𝑏𝑏
𝑏𝑏𝑏𝑏+𝑅𝑅+1

,           𝑏𝑏 = 𝜀̇𝜀2
𝜀̇𝜀1

  (14) 

In the equations above, Equation 9a can be promptly recovered if R=1.0 (i.e., von Mises). Therefore, 
Equation 13 can be seen as a generalization of Equation 9a. For the “averaged” triaxiality based on 
the new equation, one simply has to use the total strains instead of using the strain increments in 
Equations 13 and 14. 
 
As will be demonstrated in the next section, Equation 13 is able to estimate the triaxiality more 
accurately than Equation 9a. 
 

5 Uniaxial tensile test 
In this section, we assess the method described in the previous sections when used to estimate the 
triaxiality in a uniaxial tensile test. The material used was an aluminum sheet typically used in the 
automotive industry. The same material was approached by Andrade et al. in [5]. The geometry of the 
tensile test as well as the optically measured strain fields in the 0°, 45° and 90° directions is given in 
Fig. 1. The mean R values measured in the three directions were R00=0.7, R45=0.5 and R90=0.8. A 
material card for *MAT_036E with HOSF=1 was also calibrated (see [5]). The material card will be 
later used in order to compare the estimated triaxiality with the triaxiality obtained in the simulation. 
 

 
   

(a) Specimen dimensions   (b) 0°, R00=0.7   (c) 45°, R45=0.5   (d) 90°, R90=0.8 

Fig.1: Tensile test: Geometry and optically measured strain fields close to failure (equivalent strain). 

 
We use Equation 9a (von Mises based) and Equation 13 (Hill based) in order to estimate the triaxiality 
in the tensile test. A point at the center of the specimens in all three directions is chosen for all 
evaluations. From the DIC system, the strain components ε1 and ε2 over time are evaluated, exported 
to a file and then used as input of a simple script which evaluates Equations 9a and 13. Additional 
input information is the R value necessary for the Hill-based triaxiality estimation. After the script 
execution, the (current) triaxiality calculated from strain components ε1 and ε2 as well as the 
equivalent strain are saved in a new file. 
 
Figure 2 shows the strain-triaxiality paths for the central point in the tensile specimen in all three 
directions. The triaxiality used in Fig. 2a was estimated using Equation 9a, i.e., it was based on the 
von Mises model. At the beginning of the test, the strain increments measured with the optical system 
exhibit some oscillations which are directly reflected in the value of triaxiality calculated with Equations 
9a and also 13. Therefore, points were used instead of lines in depicting the strain-triaxiality paths in 
the diagrams in order to facilitate comprehension. With increasing plastic deformation, the oscillations 
tend to decrease and a clearer strain-triaxiality path can be observed. 
 
For the sake of reference, a line was added to the diagrams in Figure 2 for which the triaxiality of 1/3 is 
constant. In principle, a uniaxial tensile test should, up to the necking point, deliver exactly this value 
of triaxiality. If not, this would mean that the test was not perfectly uniaxial. As can be seen in Fig. 2a, 
the strain-triaxiality paths for the tensile test in the 0°, 45° and 90° directions do not start at exactly1/3. 
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Remarkably, the strain-triaxiality path for the 45° direction begins at a triaxiality around 0.45, a 
significant deviation with respect to the expected value of 1/3. Furthermore, Fig. 2a could lead to the 
conclusion that the tensile test was not perfectly uniaxial and that the different material orientations 
also have an impact on how “uniaxial” the test was. In fact, this conclusion is not correct. The reason 
for the deviations in triaxiality observed in Fig. 2a is related to the effect of the material anisotropy. 
Noteworthy is the fact that the 45° direction exhibits the largest deviation of the three directions. The 
45° direction is also the orientation whose R value was the farthest from 1.0 (i.e., the isotropic case). 
 
The observed deviations in the value of triaxiality can be corrected by using the Hill-based estimation 
of Equation 13. In the present evaluation, the mean R value in each direction was used for calculating 
the triaxiality. As can be seen in Fig. 2a, with the use of the Hill-base estimation, the initial triaxiality in 
all directions is around 1/3. The oscillation around the 1/3 triaxiality line can be explained by the 
oscillations observed in the strain increments measured with the optical system. In all three cases, the 
triaxiality starts to considerably increase after reaching a local true equivalent strain of around 0.2 
which corresponds to the necking strain observed in the experiments. As expected, from the necking 
point on, the behavior is no longer homogeneous and the triaxiality increases. 
 
At this point, it is important to emphasize that the consideration of the anisotropic coefficient was 
crucial in order to more correctly estimate the triaxiality in the physical test. It is also important to 
remark that Equation 13 is a closed-form equation which does not require any numerical solution. This 
makes its usage within a typical DIC software quite attractive. 

  
           (a) Von Mises based triaxiality estimation                    (b) Hill based triaxiality estimation 

Fig.2: Strain-triaxiality paths based on the triaxiality estimation of the tensile test in three directions. 
All diagram data were calculated exclusively from the strain fields obtained experimentally. 

 
Andrade et al. [5] presented an orthotropic material model which could reproduce strain fields of an 
aluminum sheet with high accuracy. This material model is implemented in LS-DYNA under 
*MAT_036E if the option HOSF is set to 1.0. For the present material, a material card was calibrated 
using this material model whose results are presented in more detail in [5]. In the present contribution, 
we used this material card to simulate the tensile test in different directions and evaluated the strain-
triaxiality path in the simulation. Shell elements of type 16 with a mean element size of 0.5mm were 
used in the simulations. A comparison between the estimated and simulated strain-paths is given in 
Fig. 3. Notably, the agreement between simulation and estimation is very good.  
 
It is worth noting though that the simulation was carried out with a single material card for *MAT_036E 
which is a more sophisticated material model than the transversal anisotropy Hill model adopted in 
Section 3. If one would adopt the formulation of *MAT_036E in order to estimate the triaxiality based 
on strain fields, a numerical solution would most likely be inevitable, making it less attractive in using in 
practical situations. However, the Hill-based estimation is able to deliver remarkably good estimations 
of the strain-triaxiality path for the three directions. One should note that, in the case of the estimation, 
a different R value had to be used for calculating the triaxiality for each load direction. This means that 
the current method requires that the loading direction with respect to the material orientation is known. 
The more the loading direction deviates from the material orientation, the less accurate the estimation 
of the strain-triaxiality path. 
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Fig.3: Comparison of the strain-triaxiality paths between experimental estimation (Hill based) and 

simulated values with *MAT_036E with HOSF=1. Note that the experimentally estimated 
values of the triaxiality were calculated only using the strain fields from the optical 
measurement. 

 

6 Notched and shear specimens 
 
In this section, we use the equations for the triaxiality estimation with the experimental data of a 
notched and a shear specimen for the same material than in Section 5. The dimensions of the 
specimens are given in Fig. 4 meanwhile the strain fields (equivalent strain) are given in Fig. 5. 
 
 

  

Fig.4: Dimensions of the notched and shear specimens. 
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Fig.5: Strain fields optically measured for a notched and a shear specimen in 90° (equivalent strain). 

 
In the current study, both the notched and shear specimens were tested only in the 90° direction. Fig. 
6 has the strain-triaxiality paths estimated by using both the von Mises based and also the Hill based 
equations. Remarkably, both predictions are very similar. One possible explanation is the fact that 
these specimens were tested only in the 90° direction whose R value is around 0.8, i.e., not too far 
away from the isotropic case of R=1.0. Therefore, the differences between the von Mises based and 
the Hill based predictions are rather small. 
 
Similar to the case of the tensile test, we also use the material card calibrated in [5] in order to 
simulate both specimens in LS-DYNA. The comparison between the estimated and the simulated 
strain-triaxiality paths can be seen in Fig. 7. A very good agreement is seen in the case of the notched 
test. However, in the case of the shear test, some deviation was observed where the estimation 
through Equation 13 gives a triaxiality much closer to 0.0 than the simulation. One possible reason for 
this mismatch is the relatively coarse discretization of the shear specimen. Fig. 8 shows a comparison 
of the strain fields in the simulation and the one measured with the optical system. As can be seen in 
this figure, there is a certain mismatch between the two strain fields. For instance, there is some 
excessive plastic deformation within a single element at the edge of the critical zone in the simulation. 
This straining was not observed in the experiment. A finer mesh might alleviate the problem or 
perhaps a yield curve for shear might be necessary, but further investigation still has to be pursued. 
Another possible reason for the mismatch between the estimated and the simulated strain-triaxiality 
path is a possible lack of accuracy of the Hill based estimation for certain cases. 
 

  
 

Fig.6: Strain-triaxiality paths from experimental data. The triaxiality was calculated using the von 
Mises (Equation 9a) and transversal Hill (Equation 13) based relations for the notched and 
shear test in the 90° direction. 
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Fig.7: Strain-triaxiality paths for the notched and shear specimens: Comparison between estimation 

(Hill-based) and simulation (*MAT_036E with HOSF=1). 

          
Fig.8: Comparison of the strain field (eq. strain) in the simulation and measured by the optical system 

7 Summary 
In this paper, we presented a method for estimating the triaxiality based solely on strain fields 
measured by optical systems. Using an estimation based only on von Mises might lead to incorrect 
results for the triaxiality. Therefore, we propose the use of a Hill based closed-form relation derived 
from a transversal Hill anisotropic plasticity model. The results show that the Hill based equation is 
able to deliver triaxialities quite close to the expected values of uniaxial tensile tests. The comparison 
with numerical simulation also shows very good agreement. This contribution only shows the first 
results of the new technique. Further investigation is however in progress. 
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