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1 Introduction 

Due to technical progress, cars of the future will consist of even more different materials than they 
already do today. Especially plastic materials will experience a further increase of importance, as they 
provide advantages such as a low density and the freedom to shape them unconventionally. In view of 
this trend, it is essential to improve the quality of predictions derived from corresponding simulations. 
Modelling the material in an appropriate way is crucial when simulating a component. While in case of 
metals plastic deformation happens at a constant volume and therefore is easy to describe, this kind 
of incompressibility does not apply to plastics. Furthermore, the hardening behavior of these materials 
is usually significantly more complicated. Therefore, complex mechanical descriptions have to be used 
for the simulation of plastics, which describe hardening and failure in a multiaxial state of stress. 
Although those models have been available for some time, it is still cumbersome to calibrate their 
parameters. In particular, the correct prediction of the strain field, which is the key to characterize 
material failure e.g. with GISSMO [5], is challenging, as a large number of degrees of freedom have to 
be adjusted simultaneously. 
 

2 Summary 

The objective of the newly developed method is to perform the calibration of the material model 
*MAT_SAMP-1 [2, 4] with respect to experimental data without using ansatz functions and reverse 

engineering. In contrast to previous approaches, the technique allows a predictive simulation not only 
of the force level, but also of the strain field – including the phase beyond necking (see Figure 1). 
Based on local strain data from a material test and postulation of a material model, the stress state is 
determined by the solution of differential equations. Proceeding from the state of stress, an optimized 
yield curve can be determined. Moreover, a strain dependent curve for the plastic Poisson’s ratio νp 
(introduced in [2]) is calculated. Both characteristics result from a projection of the current stress and 
strain state into an equivalent state of pure uniaxial tension. 
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Fig.1: x-, y-, and z-component of the strain tensor in a virtual test and a simulation beyond the 
necking point 
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In this early stage, the focus is put on the study of plane stress states in tensile tests, currently without 
considering rate-dependency of the elastic constants. However, in further developments, 
generalizations with respect to these simplifications can be implemented. Due to the fact that in case 
of classical metal plasticity *MAT_SAMP-1 transforms into *MAT_024 [4], this model is supported as 

well. 
As a proof of concept in this paper only data sets resulting from virtual tests (simulations) are 
evaluated. Because in these tests the complete strain and stress field as well as the original yield 
curve and νp curve are known, the agreement of the derived parameters can be demonstrated. 
 

3 Mathematical Derivation 

The core component of the method is a set of differential equations, which are derived for a point in an 
isotropic continuum behaving according to *MAT_SAMP-1. For this point it is postulated that the global 

coordinate system (x, y, z) corresponds to the local coordinate system (1, 2, 3), in which no shear 
strains are present and that the load is applied in x-direction. Furthermore, it is demanded that no 
rigid-body rotation takes place and that therefore the material derivative of the Cauchy stress tensor is 
equivalent to the objective Jaumann rate. 
 

3.1 Differential Equations for the Elastic Domain 

In the case described above, for an inviscid material, the following three differential equations can be 
established: 
 

 
 

(1)  

 
 

(2)  

 
 

(3)  

 

 
The (elastic) Poisson’s ratio ν is constant and must be determined by evaluation of a uniaxial state of 
stress: 
 

 

 
(4)  

 

 
In a plane state of stress the stress component in z-direction and its time derivative vanish and the 
system (1) – (3) reduces to: 
 

 
 

(5)  

 
 

(6)  

 
 

(7)  
 

 
Introduction of the stress ratio 

 
 

(8)  
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yields the following system, which is valid for both, the elastic and the elastoplastic domain: 
 

 
 

(9)  

 
 

(10)  

 
 

(11)  
 

 
As in the elastic domain the plastic strain rates disappear equations (9) – (11) become: 
 

 
 

(12)  

 
 

(13)  

 
 

(14)  
 

 
It can be seen, that the stress ratio a is the only unknown in this system of linear ODEs. To deal with 
this overdetermination any of the three equations can be chosen or an appropriate method to solve 
several equations simultaneously must be applied. In case of perfectly consistent input data, free of 
measurement errors, all three ODEs give the same result. 
 

3.2 Differential Equations for the Elastoplastic Domain 

Besides the specification of a yield curve *MAT_SAMP-1 requires the declaration of a plastic Poisson’s 

ratio νp, which is typically not constant, but strain dependent. Analogously to the (elastic) Poisson’s 
ratio ν (see equation (4)) [2] states for a uniaxial state of stress: 
 

 

 
(15)  

 

 
By default *MAT_SAMP-1 uses a non-associated flow rule with a plastic potential g: 

 

  (16)  
 

 
In this equation, α is a material characteristic that is directly dependent on the value of νp in the 
projection of the current stress and strain state into an equivalent state of pure uniaxial tension [2]: 
 

 

  
(17)  

 

 
From equation (17) it follows that the following holds for classical metal plasticity: 
 

   (18)  
 

 
In this case, the plastic potential g transforms into the von Mises yield criterion as implemented in 
*MAT_024. 
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For a non-associated flow rule, the following relation between the tensor of plastic strain rates ∂(εp)/∂t, 
the plastic multiplier λ, the plastic potential g and the stress tensor σ can be stated: 
 

 
 

(19)  

 

 
The von Mises stress σvm in (16) depends on the second invariant of the stress deviator tensor s: 
 

 

 
(20)  

 

 
with: 

  (21)  
 

 
Furthermore, the hydrostatic pressure p in (16) and (21) follows from the first invariant of the stress 
tensor: 
 

 

 
(22)  

 

 
Inserting (20) – (22) in (16) and then evaluating (19) yields: 
 

 

 
(23)  

 

 
From this relation, the following two equations can be derived: 
 

 

 
(24)  

 

 
(25)  

 

 
The factor β was introduced for the sake of brevity and is defined by: 
 

 
 

(26)  
 

 
By combining equations (24) and (25) with the general applicable ones from (9) – (11), a system of 
five differential equations with five unknowns (a, β(νp), ∂(εxx

p)/∂t, ∂(εyy
p)/∂t, ∂(εzz

p)/∂t) can be established: 
 

 
 

(9)  

 
 

(10)  

 
 

(11)  
 

 

 
(24)  
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(25)  

 

 
If νp is unknown, which is in general the case, the equations can be combined to get a single linear 
ODE: 
 

 

 
(27)  

 

 
If νp is specified, ∂(εzz)/∂t and ∂(εzz

p)/∂t are coupled directly to this quantity by ignoring equations (11) 
and (25). Consequently, a non-linear ODE can be established: 
 

 

 

(28)  

 

 
This approach is justified by the fact that the measurement of εzz contains the largest uncertainty. 
 

3.3 Yield Curve and Curve for Plastic Poisson’s Ratio 

To solve the differential equations derived in Sections 3.1 and 3.2, numerical solution methods are 
applied. After the stress ratio a is available, the hydrostatic pressure p and the von Mises stress σvm 
follows immediately. The time derivative of the stress ratio is obtained by using difference quotients. 
Afterwards, the components of the plastic strain rate tensor can be determined by evaluating 
equations (9) – (11). Furthermore, by using (17) and (26) the plastic Poisson’s ratio νp follows from 
(24) or (25). 
So far, all of these quantities are functions of time, however, as abscissa for yield curve and νp curve 
*MAT_SAMP-1 expects a uniaxial plastic strain εpct (introduced in [2]), which is defined as a projection 

of the current strain state into an equivalent state of pure uniaxial tension. Following the 
documentation in [2], the variation of the rate of this quantity over time is established. After numerical 
integration, a yield curve and a νp curve are obtained by eliminating time from the functional relations. 
 

3.4 Validation with a Single-Element Test 

To validate the described method, a virtual test with a single fully integrated finite shell element 
(ELFORM=16) is performed. As this formulation complies with the 5-parameter Reissner-Mindlin 

model, strains εzz ≠ 0 are not supported in its original specification. However, by activating the option 
ISTUPD=1, a thickness change based on the material model and driven by the membrane strains is 

incorporated – also when calculating the nodal forces [3]. 
The element and its boundary conditions are sketched in Figure 2 and as indicated there, applied 
displacements in x- and y-direction enforce a plane biaxial state of stress. The magnitude of these 
loads is arbitrary and irrelevant for the following discussion. As material model *MAT_SAMP-1 is 

chosen and as yield curve and νp curve typical shapes for a thermoplastic are stated. 
  

 

Fig.2: Validation with a single-element test 
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After executing the simulation, the stress in x-direction σxx as well as the strains εxx, εyy and εzz over 
time are evaluated and subsequently used as input for the developed algorithm. As it can be seen in 
Figure 3, apart from presumably numerical disturbances, the calculated yield curve, the νp curve and 
the stress ratio agree with the ones from the virtual test. This is a strong indication for the proper 
functioning of the method. 
 

   

Fig.3: From left to right: Calculated yield curve, νp curve and stress ratio – each with its counterpart 
from the single-element test 

 

4 General Applicability to Tensile Specimen 

The derived differential equations can be used for analyzing the deformation behavior of thin tensile 
specimens. In this case, the stress and strain state in the center of the necking area must be gathered, 
as at this point the shear strains εxy, εxz and εyz are zero due to symmetry. Furthermore, a sufficiently 
small thickness of the specimen leads to a stress state close to plane stress. If necking occurs halfway 
between the clamping areas, then the described location coincides with the origin of a centrally 
positioned coordinate system (see Figure 4). In the following, the above statement is verified by 
executing and evaluating virtual tensile tests. 

 

 

Fig.4: Tensile specimen with clamping areas partly blanked out – of particular interest is the stress 
and strain state in the center of the necking area 

 

4.1 Tensile Test of a Typical Steel 

First, a *MAT_024 model of a typical steel is investigated. In this case, the value of the plastic 

Poisson’s ratio is 0.5. As shown in Figure 5, the developed algorithm correctly reproduces both the 
yield curve and the νp curve. After a simulation with the newly calculated yield curve (in *MAT_024 

νp = 0.5 is fixed), it becomes clear that the reproduction of the force level is also given. 
Figure 6 depicts the x-, y-, and z-component of the strain tensor in the virtual test and the simulation 
beyond the necking point. The correct reproduction of the strain field at this displacement is exemplary 
for the whole study. 
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Fig.5: From left to right: Calculated yield curve, calculated νp curve and force level from a simulation 
– each with its counterpart from the virtual test 
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Fig.6: x-, y-, and z-component of the strain tensor in the virtual test and a simulation beyond the 
necking point (input data from Figure 5) 

 

4.2 Tensile Test of a Typical Thermoplastic 

In the next step of verification, the *MAT_SAMP-1 material model from Section 3.4 is examined. As it 

can be seen in Figure 7, also in this case the algorithm predicts the yield curve and the νp curve very 
well. However, the νp curve shows strong oscillations at its beginning, which must be removed before 
using it for a simulation. An explanation for this characteristic is given later on. In the following, the νp 
curve is smoothed and the start value is set to 0.4, which corresponds to the value of the (elastic) 
Poisson’s ratio of the material. Next, a new yield curve is calculated with the smoothed νp curve given. 
By doing so, compatibility between both data sets is guaranteed. A simulation with the newly 
calculated curves proves the given reproduction of the force level. 
Figure 8 shows the x-, y-, and z-component of the strain tensor in the virtual test and the simulation 
beyond the necking point. Although the location of necking is not exactly the same, the correct 
reproduction of its shape and the strain field at this displacement are exemplary for the whole study. 
 
 



12th European LS-DYNA Conference 2019, Koblenz, Germany 
 

 

 
© 2019 Copyright by DYNAmore GmbH 

   

Fig.7: From left to right: Calculated yield curves, calculated and smoothed νp curve and force level 
from a simulation – each with its counterpart from the virtual test 
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Fig.8: x-, y-, and z-component of the strain tensor in the virtual test and a simulation beyond the 
necking point (input data from Figure 7) 

 
As it can be seen in the right plot of Figure 7, the force level over time is not smooth. The reason for 
this is that the corresponding yield curve of the thermoplastic is not monotonically increasing. As a 
consequence, rows of elements subsequently soften and harden. On the left side of Figure 9, ∂(εxx)/∂t 
of the central shell elements parallel to the x-axis at y = 0 is plotted over t in a shared diagram. 
 

  

Fig.9: Left: ∂(εxx)/∂t vs. t of the central shell elements parallel to the x-axis at y = 0; right: global F vs. t 
plot – positions of vertical lines correspond to the maxima of those ∂(εxx)/∂t curves with peaks 



12th European LS-DYNA Conference 2019, Koblenz, Germany 
 

 

 
© 2019 Copyright by DYNAmore GmbH 

On the right side of Figure 9, the global F vs. t plot of the original simulation is shown. In this diagram, 
the positions of the vertical red lines correspond to the maxima of those ∂(εxx)/∂t curves with values 
larger than a specified threshold. It can be clearly seen, that those lines divide the plot in recurring 
patterns, emerging from softening and hardening of individual elements and element rows, 
respectively. The described effect is not only numerical, but in fact has its origin in nature. It is typical 
for thermoplastics and known in literature as so-called telescope effect [1]. 
It is evident that the described behavior of the material does effect the local quantities such as 
elementwise strains and stresses as well. Consequently, especially σxx at the element in the center of 
the necking area is not smooth over time. As the algorithm needs the derivative of this quantity with 
respect to time, it is inevitable to eliminate the disturbances in this curve. Smoothing, however, is 
another potential source of errors and this might be the reason, why the νp curve in Figure 7 shows 
strong oscillations at its beginning. 
 

5 Challenges in Application to Real Tensile Tests 

5.1 Necessity of an Iterative Approach 

In a real tensile test the stress distribution in the specimen cannot be measured. For this reason, the 
x-component of the stress tensor in the center of the necking area σxx is approximated by: 
 

 
 

(29)  

 

 
In this context, F is the force level and A is the time-dependent cross section of the specimen in the 
necking plane – a plane parallel to the y-z-plane. As long as no localization is observed in the tensile 
test, it holds: 
 

  (30)  
 

 
However, as soon as necking starts, the stress distribution over the cross section is no longer constant 
and the integral approximation deviates from the demanded value. For the investigated cases from 
Section 4, the discrepancy is depicted in Figure 10. 
 

 Tensile Test of a Typical Steel  Tensile Test of a Typical Thermoplastic  

  

Fig.10: x-components of the stress tensor in the central elements and their integral approximations; 
left: virtual test of steel from section 4.1; right: virtual test of thermoplastic from section 4.2 

 
It turns out that the deviations in σxx have a large impact on the calculated yield curve, but are 
negligible with respect to the resulting νp curve. Consequently, an iterative approach for executing and 
evaluating a real tensile test is established. The underlying algorithm is as follows: 
 
1. Execution of tensile test with thin specimen, record of the displacement field with three-dimensional 

image correlation techniques  
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2. Evaluation of the strain state in the center of the necking area, determination of an integral 
approximation for the x-component of the stress tensor at this point 

3. Calculation of yield curve and νp curve 
4. Execution of a simulation of the tensile test with these material characteristics – the applied 

displacement vs. time must correspond to the one from the original test 
5. If the yield curve contains errors due to the approximation of σxx, the force level of the simulation 

Fiter will deviate from the original level F → Calculation of a correction function for σxx based on the 
ratio F/Fiter 

6. Correction of σxx in the phase beyond necking and begin of an iterative loop starting with step 3 – 
the νp curve can either be newly calculated as well or remain unchanged 

7. Convergence is reached if the maximum error in force level is smaller than a specified threshold ϵ: 
max(|[F(tn)-Fiter(tn)]/F(tn)|)<ϵ with 0 ≤ n ≤ nmax 

 

5.2 Tensile Test of a Typical Steel 

The iterative approach described above is first demonstrated for the *MAT_024 model of a typical 

steel from Section 4.1. As depicted in Figure 11, after 16 iterations (red curves) the force level from the 
simulation deviates less than 1% from the one of the virtual test. In this case, agreement can also be 
observed in both, σxx and the yield curve. 
Figure 12 shows the x-, y-, and z-component of the strain tensor in the virtual test and the 16th 
repeated simulation beyond the necking point. The correct reproduction of the strain field at this 
displacement is exemplary for the whole study. 
 

   

Fig.11: From left to right: Iterated yield curves, corresponding σxx and force levels from simulations – 
all with their counterpart from the virtual test 
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Fig.12: x-, y-, and z-component of the strain tensor in the virtual test and a simulation beyond the 
necking point (input data from Figure 11) 
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5.3 Tensile Test of a Typical Thermoplastic 

Next, the *MAT_SAMP-1 material model of a typical thermoplastic from Section 3.4 and 4.2 is 

examined. Due to the perturbing influence of softening and hardening patterns in the force level, both 
the convergence criterion and the correction function for σxx are based on smoothed curves. In the 
present case, an acceptably smooth force level was achieved by fitting a polynomial of higher order, 
however, in further development, this subject must and will be further addressed. 
After 10 iterations the smoothed force level from the simulation deviates less than 1% from the one of 
the virtual test. Consequently, also the original curves in Figure 13 almost coincide. The original yield 
curve is approximated in a good manner. However, larger deviations can be observed in the plot of 
σxx. Here, artificial oscillations coming from the polynomial of higher order are evident. 
Despite the shape of σxx in the final iteration, the calculated yield curve leads to a good agreement of 
the strain field in the virtual test and the 10th simulation. This can be seen in Figure 14. Again, the 
correct reproduction at this displacement beyond the necking point is exemplary for the whole study. 
 

   

Fig.13: From left to right: Iterated yield curves, corresponding σxx and force levels from simulations – 
all with their counterpart from the virtual test 
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Fig.14: x-, y-, and z-component of the strain tensor in the virtual test and a simulation beyond the 
necking point (input data from Figure 13) 

 
 
 
 
 



12th European LS-DYNA Conference 2019, Koblenz, Germany 
 

 

 
© 2019 Copyright by DYNAmore GmbH 

6 Conclusion and Outlook 

It was shown, that in case of ideal tensile test data sets, the newly developed method is capable of 
reproducing the yield curve and νp curve of the used material models *MAT_SAMP-1 and *MAT_024. 

Simulations with the calculated input do not only reproduce the force level, but also the original strain 
field of the virtual tests – including the phase beyond necking. In hardware tests, the stress distribution 
in the tensile specimen cannot be measured. For this reason, an iterative approach was established, 
which is capable of dealing with an integral approximation of σxx in the center of the necking area 
rather than the exact value. 
As mentioned in Section 5.1, the evaluation of real tensile tests requires a record of the displacement 
field with three-dimensional image correlation techniques. Although the results of the first hardware 
tests are promising, they show that implementation of suitable and stable smoothing algorithms is the 
key for the further development. Naturally, the data sets coming from real tensile tests are 
superimposed with noise. However, as the method requires the time derivatives of strains and stress, 
the impact of these disturbances is even increased. The importance of smoothing algorithms is also 
present in the iterative approach stated above, because the calculation of an internal correction 
function for σxx requires smooth force levels. 
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