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Abstract 

Isogeometric analysis represents a newly developed technique that offers the application of Computer 
Aided Design (CAD) concept of Non-uniform Rational B-Splines (NURBS) tool to describe the geometry 
of the computational domain. The simplified transition of CAD models into the computational domain 
eliminates the problems arising from the geometrical discontinuities induced by the faceted 
approximation of the mesh. Moreover, numerical analysis directly on NURBS objects significantly 
reduces the design-to-analysis time compared to traditional FEA approach. In the field of contact 
mechanics, when finite elements are applied to geometry with curved surfaces, the result is a non-
smooth geometrical representation of interface surfaces which may lead to mesh interlocking, high 
jumps and spurious oscillations in contact forces. To eliminate these issues, various surface 
smoothening strategies are to be employed in case of FEM. Isogeometric based analysis alleviates 
these issues without employing any additional smoothening strategy due to inherent higher order 
continuity of NURBS basis functions and much more accurate results are obtained compared to 
conventional FE approach. In the current study, LS-DYNA is used to demonstrate the capabilities and 
advantage of an isogeometric analysis though an example of pendulum under gravitational load. The 
numerical simulation results are analytically validated and the comparison of NURBS surfaces with 
faceted surfaces is carried out to investigate the accuracy. 
 

1 Introduction 

The main difficulty in contact analysis of cylindrical parts is non-smoothness because traditional finite 
elements utilize element facets to represent the contact surfaces. The inevitable peaks and valleys on 
the meshed surfaces of the cylindrical components may inhibit the rotation of these parts when parts 
are coarsely meshed. Mesh refinement decreases the deviation from the true surface and allows the 
rotation but high and low spots can never be eliminated from the mesh. The surface normals can 
undergo jumps across the facet boundaries and may lead to spurious oscillations in contact forces due 
to the faceted surfaces [1]. This problem becomes more prominent for the case of large sliding contact 
problems or large curvature surfaces. Various surface smoothening strategies are to be employed to 
circumvent the geometrical discontinuities by smoothening the surface using spline interpolation. In 
smooth contact algorithms, an additional smooth curve fitted surface is introduced on top of the existing 
finite element mesh. This includes an extra layer of data management and increases computational 
effort [2]. 
Another remedy to geometric discontinuity is the isogeometric approach, wherein NURBS are utilized 
for both geometric representation and analysis framework. This approach yields exact shape of 
geometry even at a coarse discretization. Thus, this approach inherently encounters the issues 
originated from the finite element approach. Due to these default properties of isogeometric analysis 
(IGA), it has been highly recommended for the study of contact problems as there is no need for 
additional smoothening approaches. In this paper, an example of a pendulum and a cylindrical roller 
bearing are used for the comparative study between classical FEM and IGA. 
 

2 Preliminaries 

In isogeometric analysis, B-Splines and NURBS basis functions are commonly used for the CAD 
modeling and discretization of geometries and are defined in the parametric space [3]. A short 
introduction of these functions is summarized below. 

2.1 B-splines 

B-splines are composed of a linear combination of B-splines basis functions. The vector-valued 
coefficients of the basis functions are called control points, while the basis functions are constructed by 

a knot vector. A knot vector Ξ  is a non-decreasing set of parametric space coordinates, shown as [3]: 
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𝛯 =  { 𝜉1, 𝜉2, . . . , 𝜉𝑛+𝑝+1} (1) 

where each knot entry, ξi, represents a real number (i. e. , ξi  ∈  ℝ), p denotes the order of the B-spline 

and n is the total number of B-spline basis functions. A knot vector can be categorized as a uniform or 

as a non-uniform vector. If the knots are equally spaced, it is called uniform vector, otherwise a non-
uniform vector. A knot vector is said to be an open knot vector if the first and last knot value of a knot 

vector appear p+1 times, which is the standard in CAD literature. B-spline basis functions based on the 

knot vector Ξ and order p, are obtained from the Cox-de Boor recursion formula [3]: 

 

𝑓𝑜𝑟 𝑝 = 0,           𝑁𝑖,0(𝜉) = {
1,   𝑖𝑓 𝜉𝑖  ≤  𝜉 <  𝜉𝑖+1,
 0,        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

                                                                        

 𝑓𝑜𝑟 𝑝 > 0, 𝑁𝑖,𝑝(𝜉) =  
𝜉−𝜉𝑖

𝜉𝑖+𝑝−𝜉𝑖
𝑁𝑖,𝑝−1 + 

𝜉𝑖+𝑝+1−𝜉

𝜉𝑖+𝑝+1−𝜉𝑖+1
𝑁𝑖+1,𝑝−1. 

B-spline basis functions are piecewise polynomials and constitute a partition of unity ∑ Ni,p(ξ) =n
i=1

1 for all ξ1 ≤ ξ ≤ ξn+p+1. They are pointwise non-negative over the entire domain, i.e. Ni,p(ξ)  ≥ 0, ∀ ξ. 

Their continuity depends on Ξ only. If a knot value is not repeated in the knot vector Ξ, then the pth order 

B-spline function Ni,p(ξ) has Cp-1 continuity at the knot point. The continuity can also be decreased to  

Cp-m if a knot has multiplicity m. In particular, the basis becomes interpolatory at the knot where the 

multiplicity of the knot is exactly p because the continuity of the basis becomes C0 at that knot. 

Multivariate B-spline basis functions are generated through the tensor product of the univariate basis 

functions. As an example, the bivariate B-spline basis functions are defined as: 

  𝑁𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) = 𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)                                                                                                            (3) 

where Ni,p and Mj,q are pth and qth order B-spline basis functions that are defined in ξ and η parametric 

directions, respectively [4]. Once the B-spline functions are known, a pth order B-spline curve can be 

defined as: 

𝐶(𝜉) = ∑ 𝑁𝑖,𝑝(𝜉)𝐵𝑖
𝑛
𝑖=1  (4) 

where B represents the array of the control points [3]. For a given control net Bi,j , the B-spline surface 

is defined through the tensor product of univariate B-spline basis functions as 

𝑆(𝜉, 𝜂) =  ∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑚
𝑗=1

𝑛
𝑖=1  𝑀𝑗,𝑞(𝜂) 𝐵𝑖,𝑗 (5) 

where n and m represent the total number of basis functions defined along the ξ- and η- parametric 

directions, respectively. 

2.2 NURBS 

NURBS are frequently employed in CAD industries and are able to accurately represent the complex 
geometries and conic sections such as circles and ellipses. The NURBS basis is defined as: 

𝑅𝑖,𝑝 (𝜉) =
𝑁𝑖,𝑝(𝜉) 𝑤𝑖

𝑊 (𝜉)
 (6) 

where   𝑤𝑖 ≥ 0 is referred to as the weight value associated with control point vector Bi and weighting 

function 𝑊(𝜉) =  ∑ 𝑁𝑖,𝑝(𝜉) 𝑤𝑖
𝑛
𝑖=1  is the weighted linear combination of the standard B-spline basis 

function [3]. The bivariate NURBS functions are given by: 

𝑅𝑖,𝑗
𝑝,𝑞

(𝜉, 𝜂)  = 𝑅𝑖,𝑝 (𝜉)𝑅𝑗,𝑞 (𝜂) =
𝑁𝑖,𝑝 (𝜉)𝑀𝑗,𝑞 (𝜂)

∑ ∑ 𝑁𝑖,𝑝 (𝜉)𝑀𝑗,𝑞 (𝜂)𝑤𝑖,𝑗 
𝑚
𝑗=1

𝑛
𝑖=1

 (7) 

where 𝑤𝑖,𝑗 denotes the control point net [3]. NURBS basis functions 𝑅𝑖,𝑝 (𝜉) in conjunction with control 

points Bi   define the NURBS curve [3]: 

C(ξ) = ∑ 𝑅𝑖,𝑝(ξ)𝐵𝑖

𝑛

𝑖=1
. (8) 

(2) 
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NURBS surfaces are defined through the tensor product of the univariate NURBS basis function 
according to [3] as:  

𝑆(𝜉, 𝜂) = ∑ ∑ 𝑅𝑖,𝑗
𝑝,𝑞

(𝜉, 𝜂)𝐵𝑖,𝑗
𝑚
𝑗=1

𝑛
𝑖=1 . (9) 

3 Pendulum under gravitational load test case 

In this section, a pendulum under gravity load, shown in Fig. 1, suspended from the top and swinging 
freely is investigated.  

 

Fig.1: Schematic diagram of the pendulum. 

 
We assume that the pendulum arm is rigid and massless. Then the constitutive equation governing the 
pendulum becomes: 

ⅆ2𝜃

ⅆ𝑡2
 

+
𝑔

𝐿
𝑠𝑖𝑛 𝜃 = 0 (10)  

where 𝜃 is the angular displacement, t is the time, g is the acceleration due to gravity and L is the length 

of the pendulum [5]. To solve this nonlinear equation, consider that the oscillations of the pendulum are 
subjected to the initial conditions 

𝜃(0) = 𝜃0                 and                  (
ⅆ𝜃

ⅆ𝑡
)

𝑡=0
= 0 (11) 

where θ0 is the amplitude or the maximum angular displacement at time zero measured from the vertical 
line. An exact analytical solution for the period in terms of an elliptic integral is given by  

T = 4√
L

g
∫

ⅆ𝜓

√1−𝜘2 𝑠𝑖𝑛2 𝜓

π

2

0

=       4√
L

g
F (

π

2
, ϰ)      =  4√

L

g
K(ϰ). (12) 

Here K(ϰ) is a complete elliptic integral of first kind with ϰ2 =
L ω0  

2

4g
< 1 and ωo is the angular velocity. If 

the arm is not massless, the pendulum’s period depends on its moment of inertia and is given in [6] by: 

𝑇 =  4√
𝐼𝐶𝑀+𝑚𝑙2

𝑚𝑔𝑙
∫

ⅆ𝜓

√1−𝜘2 𝑠𝑖𝑛2 𝜓

π

2

0

 (13) 

where 𝐼𝐶𝑀 represents the mass moment of inertia with respect to the mass center of the pendulum and 

𝑙 denotes the length of the pendulum from the hung point to the mass center of the pendulum. The 

angular displacement 𝜃 as a function of t can be represented using the expression: 

𝜃(𝑡) = 2 sin−1 {sin
𝜃0

2
𝑠𝑛[K(ϰ) − 𝜔𝑡;  ϰ]} (14) 

where sn represents the Jacobi elliptic function and 𝜔 =
2𝛱

𝑇𝑜
   denotes the angular frequency [7]. The 

reaction force can be calculated according to [6] by: 

𝐹 = 𝑚
𝑣2

𝐿
+ 𝑚𝑔 cos 𝜃. (15) 

Here, the velocity v is calculated from the equation 
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𝑣 = 𝐿
ⅆ𝜃

ⅆ𝑡
= 𝐿√

2𝑔

𝐿
√(𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃𝑜) (16) 

where 
ⅆ𝜃

ⅆ𝑡
  is obtained from the integration of Eq. 10. 

4  IGA implementation in LS-DYNA for test case  

A practical example of the pendulum is developed in LS-PrePost for illustrating the stepwise description 
of the implementation procedure. In this example, the effect of contact surface smoothness is analyzed 
by employing various contact types. 

 

 

Fig.2: Pendulum under gravity load (left) and NURBS model of the pendulum (right). 

4.1 Construction of NURBS discretized geometry and boundary conditions 

In IGA, conversion of CAD model to NURBS patches requires parametric details such as control points, 
order of NURBS basis functions and knot vectors. In LS-PrePost NURBS patches are created from CAD 
geometry and the necessary geometric information including control points in local r- and s- direction, 
order of basis functions and knot vectors in both direction are automatically generated. These NURBS 
patches can be modified further by using various refinement options without altering the original 
geometry. For the given example of the pendulum, the inner part (part 1) is divided into two Nurbs 
patches, while the remaining part of the pendulum consists of five Nurbs patches.  In this case, quadratic 
NURBS basis functions are used to construct the NURBS discretized geometry. The continuity of the 
NURBS basis functions at the junction between different patches dropped from C1 to C0. In Fig. 3 
quadratic NURBS basis function profiles are plotted for part 1 and it can be observed that inter element 
continuity of the basis function is C1 which is dropped to C0 where the knots are repeated and also at 
the junction of NURBS patches. 

 

Fig.3: Quadratic NURBS basis function profiles for part 1. 

 
For the purpose of comparison, three different cases based on biquadratic NURBS elements and three 
cases using standard bilinear shell elements are considered and their details for each part is presented 

 
𝑘𝑛𝑜𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑁𝑈𝑅𝐵𝑆 𝑝𝑎𝑡𝑐ℎ 

𝛯 =  {0,0,0,
1

4
,
1

2
,
1

2
,
3

4
, 1,1,1} 
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in table 1, while inner and outer part of the pendulum under different NURBS discretizations are shown 
in Fig. 4. 

Parts 
Case (Biquadratic Nurbs element) Case (Bilinear Shell element) 

I II III I II III 

1 4×1 8×2 12×3 12×6 18×9 32×17 

2 8×1 20×2 44×3 32×6 50×9 88×17 

3 5×1 6×2 7×3 23×6 36×9 66×17 

4 8×1 10×2 12×3 46×6 70×9 126×17 

Table 1: Detail of NURBS and standard shell elements. 

 

   
          (a)     Part 1: 4×1       (b)        Part 1: 8×2        (c)       Part 1: 12×3 

Part 2: 8×2  Part 2: 20×2  Part 2: 44×3 

Fig.4: Biquadratic NURBS elements. 

 
According to the specific case of the pendulum the inner part (part 1) is fixed while the remaining part 
of the pendulum may rotate freely under gravity load. Linear elastic mild steel properties are used for 
the given example. Frictionless contact is defined between part 1 and part 2 and the gravity load is 
applied using the keyword *LOAD_BODY_ (OPTION). The one way contact interface *AUTOMATIC_ 
ONE_WAY_SURFACE_TO_SURFACE and *AUTOMATIC_SURFACE _TO_SURFACE contacts are 
used for this study. In one-way contact, only the slave side is checked for penetration against the master 
segments while the master nodes do not undergo any sort of checking. On the contrary, surface to 
surface contact is identical to one-way except the penetration detection is symmetric. In this type, first 
the nodes of the slave segments are checked for a possible penetration against the master segments 
after which the master nodes are checked against the slave segments. In LS-DYNA two possibilities are 
available for contact boundary conditions of NURBS-based finite elements. The first possibility is that 
the geometry of the contacting NURBS surfaces can be approximated using bilinear quadrilateral 
interpolation elements so that the existing FEM contact formulations are immediately accessible. These 
interpolation elements do not play any role in the actual computation and thus their contribution to the 
stiffness of the shell is zero.  In the second possible case, the actual NURBS surface can be used as 
the master surface in the contact formulation and interpolation nodes on the slave surface are projected 
onto the master surface which is defined by the NURBS basis functions. This can be implemented by 
activating IGACTC=1 in *CONTROL_CONTACT. By this, the master surface of the pendulum is 
represented by a real smooth NURBS surface instead of bilinear quadrilateral interpolation elements. 
On the other hand, the master surface defined by the standard shell elements is replaced by a smooth 
curve fitted surface in case of classical FEM. Reissner-Mindlin theory with ELFORM=16 for FEA and 
FORM=0 for IGA are chosen for modeling this problem. Reissner-Mindlin theory is applied because it 

requires only C0 continuity and in this example inter element continuity is not purely C1 but it dropped to 

C0 at the junction of the NURBS patch. The y-coordinate of the outermost node of the pendulum (position 
of the outer node used for measurement is mentioned in Fig. 2) and the overall contact force at the 
interface from the penalty based contacts are recorded for different contact types for the purpose of 
comparison.  

4.2 Results and discussion 

The result from the penalty-based contacts of case I predicted by classical FEM is plotted in Fig. 5. It is 
evident from the figure that the contact type adopting the faceted representation of the master surface 
using standard shell elements locks the pendulum to the inner part (green curve). It is possible to allow 
the rotation of the pendulum by modifying the default setting on *CONTROL and *CONTACT card. For 
example, reducing the penalty stiffness factor (SLSFAC on the *CONTROL_CONTACT card) from 0.1 
to 0.001 allows the relative motion of the pendulum. All other values including the viscous damping 
coefficient (VDC) remain unchanged. The reduction in contact stiffness factor to 0.001 yields the 
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penetration of the master nodes into the slave body which is of questionable value. Another remedy that 
can be used to obtain the desired rotation of the pendulum is to decrease the diameter of the part 1 
artificially by a small amount (see Fig.6). 

 

Fig.5: Y-coordinate of the outermost node of the pendulum for classical FE model (case I). 

 

                             

 

           

Fig.6: Original configuration (left) and gap provided between parts (right). 
 

 
However, if the master surface of standard shell elements is replaced by the smooth curve surface by 
employing the *Contact_..._SMOOTH algorithm then the desired rotation can be achieved without 
modifying the original geometry or the default setting on the *CONTROL and *CONTACT card. In case 
of IGA, the master surface defined by the smooth NURBS surfaces immediately gives the desired 
rotation of the pendulum. Both, the contact surfaces that use smooth curve surfaces and NURBS 
surfaces give the desired result despite that a coarser mesh is employed for case I (mesh detail can be 
seen in table 1). 

 

Fig.7: Y-coordinate of the outermost node of the pendulum for NURBS model and smoothed 
classical FE model (case I). 
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The analytical solution for the rotation of the pendulum is calculated according to Eq. 13 and Eq.14. Fig. 
7 shows that simulation results are in good agreement with the analytical solution. The period of the 
pendulum evaluated analytically is about 0.524 s which is deviated to 0.535 s in case of the numerical 
simulation. The contact forces, obtained using different approaches, are presented in Fig. 8 for faceted 
and NURBS surfaces. The non-physical oscillations in the contact forces can be observed for the 
faceted contact description. In fact, adopting the *CONTACT_..._SMOOTH option also gives spurious 
oscillation in the contact force, while the amplitude of the contact force oscillation is significantly less as 
compared to the approach where an artificial gap is provided between two contact surfaces. On the 
other hand, smoothing the master surface by the NURBS surface effectively alleviates the contact force 
oscillation to great extent.  

  

Fig.8: Comparison of contact force oscillations for case I. 

 
Initially, the mesh was intentionally constructed with large size elements in order to demonstrate the fact 
that NURBS surfaces combat with the mesh interlocking problem without providing any additional 
smoothening strategy. For case II, the mesh refinement is more typical and improves the results of the 
simulation but the rotation of the pendulum still contains some period errors using default settings. The 
result for the case II in Fig. 9 indicates that standard shell elements using a smooth contact algorithm 
and NURBS surfaces in case of IGA work perfectly. However, the definition of the non-smooth contacts 
is still not able to produce the desired result. 

 

Fig.9: Y-coordinate of the outermost node of the pendulum for case II. 
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In the case III, mesh refinement using standard shell elements improves the result, as expected and 
one gets the desired rotation of the pendulum for non-smooth contacts too (see Fig. 10). This means 
that a compatible mesh is always required at the interface to get the desired output but this difficulty can 
be overcome by defining the smooth contact algorithm in case of classical FEM or smooth NURBS 
surfaces in case of IGA.  

 

Fig.10:   Y-coordinate of the outermost node of the pendulum for case III. 

 
However, the discontinuity of the surface normal vector field induced by the standard shell element 
contact description still produces the spurious oscillations in the contact force, as shown in Fig. 11.  

 

Fig.11: Comparison between faceted and NURBS master surface description for case III. 

 
But the amplitude of the contact force oscillations decreases upon mesh refinement, as expected. On 
the other hand, smoothing the master surface with a NURBS surface yields insignificant oscillations in 
the contact force. Here, NURBS surfaces lead to minor artificial oscillations in contact force when 
*AUTOMATIC_ONEWAY_SURFACE_TO_SURFACE contact is employed, while *AUTOMATIC_ 
SURFACE_TO_SURFACE contact still shows non-physical oscillations in the contact force. The 
behavior of these oscillations remains until 0.15 s. After that the amplitude of these oscillations 
decreases. The influence of the mesh refinement on the contact force can be observed from Fig. 8 and 
Fig. 11. Further, it can be concluded from the comparison that mesh refinement of NURBS surfaces 
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does not affect too much the contact force oscillations. These small non-physical oscillations in contact 
force may be due to the fact that inter element continuity of NURBS surfaces is not purely C1 but it 

dropped to C0 at the repeated knots and at the junction of the NURBS patches. The maximum value of 

contact force computed analytically is about 2.73 N which is deviated to 2.49 N in case of numerical 
simulations. 
 

5 Numerical example of the cylindrical roller bearing 

A more practical example of a bearing with cylindrical rollers is chosen for a further study. To define the 
adequate accuracy of the bearing, the finite element modeling of the roller bearing requires a large FE 
model size and related calculation time while an exact model of the bearing can be represented by a 
smaller number of control points in case of NURBS modeling.  

5.1 Modeling and boundary conditions 

The simple model of the bearing comprises the following components: an inner race, 4 rolling elements 
(rollers), a cage and an outer race. The dimensions of the inner and outer raceways and rolling elements 
for the current simulation are as follows: inner race way diameter Di = 20 mm, outer raceway diameter 

Do= 47 mm, rolling element diameter Dr= 7.4 mm, rolling element depth ld =8 mm. The inner and outer 
race and the rollers are modeled with NURBS shell elements while the cage is modeled by beam 
elements, see Fig.12 (left). A FE shell element model of the rolling element bearing with the 
aforementioned dimensions is also built for the purpose of comparison. The material properties used 
are E=210 GPa, ρ =7850 kg/m3, and v=0.3. An elastic material model is chosen for the current 
simulation. During the operation of a bearing, it is required that the rolling elements should be in proper 
contact with the outer and inner raceway at all times during the simulation and they should rotate about 
the axis of the bearing and their own axis due to contact interaction between rotating inner and stationary 
outer race. A frictional *AUTOMATIC_SURFACE_TO_SURFACE contact with a static frictional 
coefficient of 0.145 and a dynamic coefficient of 0.115 is applied for the following contact interfaces 
within the model: inner race-rolling elements and rolling elements-outer race. For that case, 
*AUTOMATIC_ONEWAY_SURFACE_TO_SURFACE contact does not represent the real dynamic 
characteristics of the bearing. All degrees of freedom of the outer race are restricted and for the cage 
which is modeled using beam elements, X,Y,Z translational degrees of freedom and X,Y rotational 
degrees of freedom are constrained. A moment is applied to the beam element which is transferred to 
the inner race using RBE3 elements. The standard gravity load is also applied to the model. 

 
 
 

 

 

Fig.12:  NURBS model of the bearing (left) and y-displacement of nodes in cage and inner and 
outer race (right). 

5.2 Results and analysis 

It is assumed that relative motion between raceway and rolling element is purely rolling. The dynamic 
characteristics of the bearing are obtained and it can be seen from Fig. 12 (right) that the rotational 
speed of the rolling element and the cage are almost the same. The comparison of the contact force 
between FEM and IGA is presented in Fig.13.  This shows the force interaction between outer race and 
roller and it is clear from the figure that the faceted description of the master surface leads to a strong 
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oscillation in the resulting contact force. On the other hand, the description of master surface by using 
smooth NURBS surfaces reduces the oscillation in contact force. 

 

Fig. 13:  Force interaction between roller and outer race. 

 

6 Summary and conclusion 

The pendulum example presented in this paper illustrates how spurious oscillations in contact forces 
and mesh interlocking problems can be circumvented by using different approaches. The contact 
surface of coarsely meshed geometry represented by a faceted surface allows rotation of the parts by 
reducing the penalty stiffness factor but the amount of penetration between contact surfaces becomes 
questionable. Mesh refinement improves the mesh interlocking and the non-physical oscillations in 
contact forces but does not completely alleviate the spurious oscillations in the contact force. Smooth 
contact algorithms in case of FEM show remarkable results of displacements for the given examples, 
while artificial oscillations are still observed even though smaller elements are adopted for analysis. 
Non-physical oscillations in contact force show improvement using NURBS surfaces as being 
demonstrated in numerical examples. On the other hand, *AUTOMATIC_ONEWAY_SURFACE_ 
TO_SURAFCE contact using NURBS surfaces perform remarkably well for the pendulum example only 
while in case of the bearing it does not represent the real dynamic characteristics of the bearing. 
Contacting NURBS surfaces approximated using bilinear quadrilateral interpolation elements work quite 
fine but same surfaces pose issues when described by real NURBS surfaces. 
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