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1 Introduction 

In 2005, the term “Isogeometric Analysis” (IGA) was introduced by Hughes et al. [1]. Since then, 
reams of scientific research work has been devoted to this new finite element technology, whose main 
idea is to use the same geometrical description during the finite element analysis (FEA) that was 
previously used during the design process in the computer-aided design (CAD) environment. The 
most widely used and best understood mathematical description in CAD is based on non-uniform 
rational B-splines (NURBS). Hence NURBS-based shell and solid finite elements have been 
developed and implemented into LS-DYNA over the last few years. Although NURBS-based solids are 
available, the remainder of the paper will exclusively focus on isogeometric shell element formulations 
in LS-DYNA. 
In case of NURBS shells, thin-shell elements based on the Kirchhoff-Love shell theory as well as 
shear deformable shell elements based on the Reissner-Mindlin shell theory are available. LS-DYNA 
allows to perform finite element analysis on surface geometry descriptions based on trimmed NURBS 
and supports many other features that are commonly used, like contact boundary conditions, a huge 
library of material models, implicit and explicit time integration, mass scaling, eigenvalue analysis and 
others. 
Within the CAD environment, the geometry of a part is typically defined by a so-called boundary 
representation (B-Rep). This means, that a standard NURBS patch definition is expanded by a 
definition of various trimming curves that define visible and invisible regions of a surface. Thus, the 
outer surface is defined through an underlying NURBS patch description together with a set of outer 
trimming curves (boundary loop) living on the patch. Furthermore specific topology information is 
embedded in the CAD database to specify whether two or more trimmed patches represent a 
connected part or not. While in the CAD world it is sufficient to simply know the topological connection 
between individual trimmed NURBS patches, a finite element solver needs to make sure, that certain 
mechanical properties, like stresses, strains and bending moments, are consistently transferred from 
one patch to the other across the common interface. 
Breitenberger et al. [2] introduced the Isogeometric B-Rep Analysis (IBRA), which allows finite element 
analysis directly on B-Rep CAD models. For this, special interface elements are developed based on a 
classical penalty approach. As the method was initially developed for implicit static analysis based on 
thin Kirchhoff-Love type isogeometric shell elements, Leidinger et al. [3] extended the IBRA concept to 
nonlinear explicit dynamics, using shear deformable isogeometric shells available within LS-DYNA. 
The capabilities were demonstrated using the user-defined element interface in LS-DYNA. Inspired by 
the promising results, the proposed mechanical coupling method has been recently implemented into 
LS-DYNA and extended to rotation free thin shell isogeometric shell formulations. 
 
The paper will be organized as follows: 
Some very basic aspects of the boundary representation method used in CAD as well as some 
fundamentals of B-splines and NURBS surfaces will be sketched in section 2. Section 3 describes the 
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mechanical coupling strategy, including the formulation of the interface constraints in a strong form, its 
translation into a weak, integral form and some important aspects for the necessary numerical 
integration procedure after discretization. A rotational constraint formulation is given for the coupling of 
thin, rotation-free isogeometric shell formulations. Two numerical examples are presented in section 4 
to demonstrate the performance of the implemented coupling strategy in LS-DYNA. The paper closes 
with a summary and an outlook.  
 

2 Boundary Representation in CAD 

This section will briefly summarize and introduce some basic concepts and definitions of B-Rep CAD, 
including B-splines and NURBS, trimming and topology.  

2.1 NURBS 

Instead of using low order Lagrange polynomials for the approximation of the geometry and the 
displacement field in an isoparametric finite element approach, non-uniform rational B-splines 
(NURBS) are utilized. Some basic properties of NURBS will be sketched in the following. For a deeper 
study on NURBS, the interested reader is referred to the monograph by Piegl and Tiller [4]. 

2.1.1 B-Splines 

As already obvious from its name, NURBS are built from B-spline basis functions (see Fig.1) which are 
constructed recursively until the desired degree of the functions is reached (see Eq. (1)). 

 

Fig.1: B-spline basis functions of order 0, 1 and 2 for uniform knot vector [5] 

The recursion formula is given by 

 
𝑓𝑜𝑟  𝑝 = 0:     𝑁𝑖,0 (𝜉) = {

1
0

    
𝑖𝑓 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
                                    

𝑓𝑜𝑟  𝑝 > 0:     𝑁𝑖,𝑝 (𝜉) =
𝜉−𝜉𝑖

𝜉𝑖+𝑝−𝜉𝑖
𝑁𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝+1−𝜉

𝜉𝑖+𝑝+1−𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉)

   (1) 

where 𝜉𝑖 is the i
th
 knot of the so-called “knot vector” Ξ = [𝜉1, 𝜉2, … , 𝜉𝑛+𝑝+1], which is a non-decreasing 

set of coordinates in the parametric space, 𝑝 is the order, and 𝑛 is the number of basis functions. 
Regardless of the degree, B-spline basis functions are always positive, they constitute the important 
partition of unity property, and exhibit a C

p-1
-continuity along the internal element boundaries if no 

multiple knot values are present in the knot-vector. 

B-spline curves are created using control points 𝑩𝑖, which are used as coefficients of the B-spline 
basis functions. It has to be noted, that the control points are normally not part of the actual geometry 
which stems from the non-interpolatory nature of the B-spline basis functions. A B-spline curve 𝑪(𝜉) is 
defined through a linear combination of the B-spline basis functions with the corresponding control 
points. 

𝑪(𝜉) = ∑ 𝑁𝑖,𝑝(𝜉)𝑩𝑖
𝑛
𝑖=1  (2) 

B-spline curves may be refined (h-, p- and k-refinement) without changing the initial curve geometry. 

2.1.2 NURBS surfaces 

A projective transformation of a B-spline leads to a NURBS. This is achieved by introducing weights 𝑤𝑖 

at the control points. NURBS basis functions 𝑅𝑖
𝑝(𝜉) are constructed as follows: 

𝑅𝑖
𝑝(𝜉) =

𝑁𝑖,𝑝(𝜉)𝑤𝑖

𝑊(𝜉)
    𝑤𝑖𝑡ℎ   𝑊(𝜉) = ∑ 𝑁𝑘,𝑝(𝜉)𝑤𝑘

𝑛
𝑘=1  (3) 
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A NURBS curve is then defined in the same way as a B-spline curve, i.e. by substituting the B-spline 
basis functions

 
in Eq. (2) with the NURBS basis functions. 

Similarly to NURBS curves, NURBS surfaces in space can be defined. The necessary basis functions 
are constructed using a tensor product on the univariate basis functions (see Eq. (4)), and the final 
NURBS surface is then again defined through a linear combination of these basis functions with the 
connected control points (see Fig.2). 

𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑤𝑖,𝑗

𝑊(𝜉,𝜂)
    𝑤𝑖𝑡ℎ   𝑊(𝜉, 𝜂) = ∑ ∑ 𝑁𝑘,𝑝(𝜉)𝑚

𝑙=1 𝑀𝑙,𝑞(𝜂)𝑤𝑘,𝑙
𝑛
𝑘=1  (4) 

 

Fig.2: NURBS surface with control points in physical (left) and parametric space (right) 

2.1.3 Trimmed NURBS surfaces 

So far the construction of regular or standard NURBS surfaces has been discussed. But most of the 
time so-called trimmed NURBS surfaces are used in CAD packages. In addition to the definition of the 
NURBS surface, one or more trimming curves may be defined to trim unnecessary parts away from 
the initial regular patch (see Fig.3). 
 

 

Fig.3: Trimmed NURBS surface with control points in physical (left) and parametric space (right) 

2.2 Topology 

To understand the concept of B-Rep in CAD, additional geometrical entities and different spaces need 
to be introduced. Fig.4 shows two trimmed NURBS patches together with their underlying geometric 
description. In CAD, the underlying (untrimmed) NURBS patch is called a surface (S), whereas the 

trimmed and visible part is called a face (F). The trimming curves 𝑪̅(𝜉)̅ are defined with respect to its 

underlying surface description, i.e. in the parametric space of the untrimmed NURBS patch which is 
given by its knot vector definition Ξ(𝜉) and Η(𝜂) (see Fig.4c).  

𝑪̅(𝜉)̅ = {
𝜉(𝜉)̅

𝜂(𝜉̅)
} = ∑ 𝑁𝑖,𝑝(𝜉)̅𝑛

𝑖=1 𝑩̅𝑖(𝜉, 𝜂) (5) 

where 𝜉 ̅is the 1D trimming curve parameter, 𝜉 and 𝜂 are the corresponding 2D parametric coordinates 

within the underlying patch definition, and 𝑩̅𝑖 are the control points of the curve, given in the 2D 

parametric space as well. The parametric curve 𝑪̅(𝜉)̅ can be mapped to the physical (geometry) space 

to get 𝑪(𝜉 ) (see Fig.4a).  
To define a trimming operation, trimming curves are grouped together in directed, closed trimming 
loops. While a counter-clockwise orientation represents an outer trimming loop, a clockwise orientation 
defines inner loops (holes). In the example shown in Fig.4a, it can be seen, that the two trimmed 
patches have a common interface represented by the trimming curves 𝑪2 and 𝑪9 on the first and 
second patch, respectively. Since the trimming curves are defined in the parametric space of their 
respective NURBS surface, their image in the physical space only approximately match in general. 
Therefore, the two trimming curves 𝑪2 and 𝑪9  are linked to the edge 𝑬2 (Fig.4b), which in its essence,
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Fig.4: Trimmed surface B-Rep model represented in geometry space, as abstract topology and in 
parameter space, taken from Leidinger et al. [3] 
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establishes the topological connection between the two adjacent patches. It is worth noting that for 
most B-Rep CAD models, the interface between topological connected trimmed patches is not 
watertight and may have gaps and overlaps. 
 
 

3 Mechanical coupling 

In the previous section we outlined some ideas of the B-Rep definition used in CAD, including the 
methodology to define topological information. In order to perform numerical analysis directly on this 
kind of CAD representation, an isogeometric finite element solver needs to have the capability to 
mechanically couple the individual faces, i.e. trimmed or untrimmed NURBS patches, along their 
topologically defined common interfaces. Some basic ideas of a possible coupling algorithm will be 
given in this section. More details can be found in [2], [3], and [6]. 

3.1 Interface condition – strong form 

Without any lack of generality, the following algorithm will be presented for a coupling interface of two 
adjacent faces. Along their common interface, mechanical properties shall be transmitted from one 
patch to the other, therefore the following conditions in the interface shall be fulfilled: 
 
- The displacements and rotations shall be the same on both sides of the interface 

 
In a strong form, this can be written as: 

𝒖1 = 𝒖2|Γ  ;    𝜽1 = 𝜽2|Γ (6) 

where Γ represents the interface. 

3.2 Interface condition – penalty, weak form 

Using a penalty type formulation, the strong interface conditions can be translated into a weak, integral 
form: 

𝛼𝑑𝑖𝑠𝑝 ∫ (𝒖1 − 𝒖2) ∙ (𝛿𝒖1 − 𝛿𝒖2)𝑑Γ = 0
Γ

 (7) 

𝛼𝑟𝑜𝑡 ∫ (𝜽1 − 𝜽2) ∙ (𝛿𝜽1 − 𝛿𝜽2)𝑑Γ = 0
Γ

 (8) 

In here 𝛼𝑑𝑖𝑠𝑝 and 𝛼𝑟𝑜𝑡 are the penalty factors for enforcing the displacement and rotational constraints 

and 𝛿𝒖 and 𝛿𝜽 are variations of the continuous displacement and rotation fields, sometimes also 
called “virtual displacements and rotations” in the context of the principle of virtual work. 

3.3 Discretization 

In the isogeometric finite element analysis framework used here, the continuous fields (𝒖, 𝜽, 𝛿𝒖, 𝛿𝜽) are 
discretized using NURBS basis functions. Furthermore the discretized versions of the weak forms 
given in Eq. (7) and (8) have to be numerically integrated along the common interface. To do so, the 
integration domain along the interface is split into a set of non-overlapping, so-called B-Rep edge 
elements [2]. Similar to standard contact algorithms, one side of the interface is chosen to be the 
master side, on which the numerical integration is performed. Thus, necessary terms including shape 
functions and their derivatives need to be mapped from the parameter space of the slave side to the 
one on the master side. Fig.5 shows the necessary mapping procedure to define the B-Rep edge 
elements on the master curve. A B-Rep edge element ei is defined between any two consecutive 
points (either black or red) shown on the right side of Fig.5. 
Once the numerical integration in the B-Rep edge elements is performed, equivalent penalty forces 
and stiffnesses (for implicit analysis) for the involved control points are computed and assembled to 
the global force vector and stiffness matrix if necessary. For additional details the interested reader is 
referred to the detailed descriptions given in [2], [6], and [3]. 
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Fig.5: Mapping from slave curve onto master curve to define B-Rep edge elements [6]. 

 

3.4 Rotational constraints 

The enforcement of the translational constraint (Eq. (7)) is rather straightforward, while the 
enforcement of the rotational constraint (Eq. (8)) need some additional comments. In LS-DYNA 
isogeometric shell formulations are available that are based on the shear deformable Reissner-Mindlin 
as well as the thin Kirchhoff-Love shell theory with and without rotational degrees of freedom (DOFs) 
at their control points. In case of the shear deformable shell formulation, the rotational interface 
constraint enforcement can be directly related to the rotational degrees of freedom. For thin shell 
element formulations, no rotational DOFs are introduced, thus the rotational constraint is enforced in a 
somewhat different way. 

3.4.1 Rotation-free shell formulations 

The enforcement of the rotational interface constraints in case of rotation-free shell formulations is 
based on the ideas presented by Benson et al. [7]. A total Lagrangian constraint formulation is utilized:  

𝑠𝑖𝑛(𝜃 − 𝜃0) = 𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃0) − 𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃0) = 0 ;   𝑐𝑜𝑠(𝜃) = 𝒏1 ∙ 𝒏2    and   𝑠𝑖𝑛(𝜃) = 𝒕 ∙ 𝒏1 ⊗ 𝒏2 (9) 

In here 𝜃0 and 𝜃 represent the initial and the current angle at the interface, 𝒏1 and 𝒏2 are the surface 
normal vectors of the two joining patches at the interface, and 𝒕 is the tangent vector at the interface 
curve. The constraint expression given in Eq. (9) is evaluated at the integration points of the B-Rep 
edge elements and numerically integrated along the interface.  
 

4 Examples 

Two examples are presented to demonstrate the functionality of the proposed coupling strategy. The 
first one is a simple curved shell structure that could be easily discretized with one single untrimmed 
NURBS patch. Taking the single patch result as the reference solution, the resulting displacement 
fields for various multi-patch trimmed NURBS discretizations are compared. Furthermore, the 
performance of the rotational constraint enforcement is analyzed using rotation-free shell elements. 
The second example uses a small subsection of a rather typical B-Rep CAD structure to demonstrate 
the coupling behavior in a 3 point bending test.  

4.1 Impact on a curved shell 

The first example is chosen to compare the deformation of a simple curved shell structure that is hit by 
an impactor when discretized either with one simple untrimmed NURBS patch or with multiple, 
mechanically coupled trimmed NURBS patches. In Fig.6 left, the shell is shown discretized with a 
single, untrimmed NURBS patch, together with the impactor and the single point constraints at the four 
corner control points. A simple elasto-plastic material model is used for all the computations. 
For the simplest case of dividing the shell into two trimmed patches, the trimming curves 𝐶𝑥𝑥 and the 

physical edge 𝐸1 are displayed on the right in Fig.6. The physical edge 𝐸1 represents the trimming 
curve 𝐶12 for the patch on the left side of the interface as well as the trimming curve 𝐶24 for patch on 
the right side of the interface and thus, implicitly defines the topological connection between the two 
patches. 
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Fig.6: Left: simply supported shell and impactor with initial velocity 
Right: trimming curves for subdividing the shell into two trimmed patches 

In the multi-patch discretizations, different refinement levels have been chosen within the individual 
patches to make sure that we end up with non-matching grids along the coupling interfaces (Fig.7). 
For all cases, bi-quadric NURBS have been used. 

 

Fig.7: Discretization of the different cases, the subdivisions relate to the full, untrimmed patch 

In Fig.8 fringe plots of the resulting displacement fields are shown for the untrimmed, single NURBS 
patch case together with the other three multi-patch trimmed NURBS patch discretizations. For this 
first study, shear deformable Reissner-Mindlin type isogeometric shell elements are used..  

 

Fig.8: Resultant displacement field at simulation time t=17.5 for shear deformable Reissner-Mindlin 

shell element (FORM=0 in *ELEMENT_SHELL_NURBS_PATCH) 
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Looking at the resulting displacement fields it is obvious that the coupling strategy makes sure, that we 
have a smooth transition of the displacement field across the coupling interfaces. However it can be 
seen, that the number of coupling intersections may have some impact on the overall results. The 
maximum displacements at the given simulation time differed in the range of 2.5% compared to the 
reference solution. This difference is clearly a result of the coupling but also the different refinement 
levels in the trimmed patches may have an influence here. Furthermore, the choice of the penalty 
stiffness influences the quality of the constraint enforcement. 
 
To study the performance of the rotational constraint enforcement in case thin, rotation-free 
isogeometric shell elements are being used, the element formulation has been switched to FORM=1 
(*ELEMENT_SHELL_NURBS_PATCH). Again, Fig.9 displays the resulting displacement fields at a 

certain simulation time. The constraints seem to work properly as there is a smooth transition across 
the coupling interface. However, the absolute value of the displacement differ slightly in the case with 
four trimmed patches, which could be due to the different refinement levels used. 

 

Fig.9: Resultant displacement field at simulation time t=17.5 for thin Kirchhoff-Love shell element 

(FORM=1 in *ELEMENT_SHELL_NURBS_PATCH) and active rotational constraint enforcement 

In order to clearly demonstrate the effect of the additional rotational constraint enforcement in case of 
thin, rotation-free shell elements, the rotational constraint enforcement has been deactivated. The 
results for this case are shown in Fig.10. Note that the translational constraints are still nicely enforced 
but the lack of having an active rotational constraint enforcement leads to very pronounced kinks 
along the coupling interface and weakens the whole structure dramatically. 

 

Fig.10: Resultant displacement field at simulation time t=17.5 for thin Kirchhoff-Love shell element 

(FORM=1 in *ELEMENT_SHELL_NURBS_PATCH) without rotational constraint enforcement 
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4.2 3 point bending test 

In the second example a substructure of a quite realistic B-Rep CAD model is analyzed by a 3 point 
bending test (see Fig.11). The part consists of 24 trimmed NURBS patches that are joined along their 
topologically defined interfaces via the presented coupling strategy. Shear deformable isogeometric 
shell elements (FORM=0) have been used for the discretization of the part. The support as well as the 
impactor has been modeled with standard bi-linear shell elements.  A simple elasto-plastic material 
model has been used. 

 

Fig.11: Setup of 3 point bending test 

In Figs.12 and 13 the deformation of the part is shown. Again, the fringe plots of the deformation field 
show a nice and smooth transition of the displacements across all present coupling interfaces. 

 

Fig.12: Deformed configuration 

 

Fig.13: Deformed part (displacements scaled by a factor of 5) 
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5 Summary 

A strategy to mechanically couple topologically connected multi-patch trimmed NURBS shells in LS-
DYNA has been presented. The concept is mainly based on the works by Breitenberger et al. [2] as 
well as Leidinger et al. [3] and uses a weak constraint enforcement across the common interfaces 
based on a classical penalty approach. Two numerical examples have been analyzed to demonstrate 
the performance of the presented strategy. Although these first results are very promising, further 
studies on more realistic and complex geometries are necessary to improve the stability and quality of 
this coupling method.    
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