The effect of element formulation on FSI heart valve simulations

Giulia Luraghi
Francesco Migliavacca, José Félix Rodriguez Matas
Study on the Accuracy of FSI Heart Valves Simulations

Transcatheter Aortic Valve Implantation: an FSI study
Study on the Accuracy of FSI Heart Valves Simulations

Transcatheter Aortic Valve Implantation: an FSI study
Study on the Accuracy of FSI Heart Valves Simulations

Transcatheter Aortic Valve Implantation: an FSI study

Aim: to verify and compare different technical details of heart valve simulations
- Convergence of the mesh
- Finite element typology and formulation
- Damping factor
Set-up of the simulations

Structure: three leaflets biological valve

\[
\rho = 1100 \, \text{kg/m}^3 \\
E = 3 \, \text{MPa} \\
\nu = 0.49 \\
\text{Thickness} = 0.4 \, \text{mm} \\
\text{BC: fixed commissural edges}
\]

Fluid: blood in a rigid tube

\[
\rho = 1060 \, \text{kg/m}^3 \\
\mu = 3.5 \, \text{cP} \\
\text{BC: physiological pressure gradient}
\]
Set-up of the simulations

Fluid-Structure Interaction (FSI)
*COSTRAINED_LAGRANGE_IN_SOLID

Non-boundary fitted method
Operator Split algorithm

Fluid domain: control volume + inlet and outlet parts
Accuracy of FSI Heart Valves Simulations

SHELL
- S_1
- S_2
- S_3

BRICK
- B_1
- B_2
- B_3
- $B_2 - T_2$
- $B_2 - T_8$

Geometric Orifice Area [mm2]

- S_1
- S_2
- S_3

Time [s]

B_1
- B_2
- B_3
- $B_2 - T_2$
- $B_2 - T_8$

Time [s]
Accuracy of FSI Heart Valves Simulations

\(S_2 \): Belytschko-Lin-Tsay reduced-int, Hg Viscosity, Damp 1-5
\(S_2 \text{-BL} \): Belytschko-Leviathan, Damp 1-5
\(S_2 \text{-HgS} \): Belytschko-Lin-Tsay reduced-int, Hg Stiffness, Damp 1-5
\(S_2 \text{-FI} \): full-int, Damp 1-5
\(S_2 \text{-T} \): thickness enhanced reduced-int, Damp 1-5
\(S_2 \text{-D}_{0.1} \): \(S_2 \) model, Damp 0.1-0.1
\(S_2 \text{-D}_{5} \): \(S_2 \) model, Damp 5-5

*ELFORM=2 *IHQ=2
*ELFORM=8
*IHQ=4
*ELFORM=16
*ELFORM=25
Accuracy of FSI Heart Valves Simulations

\(B_2 \): quadratic full-int, Damp 0.1-1

\(B_2 \text{-FI} \): linear full-int, Damp 0.1-1

\(B_2 \text{-FI}_{\text{Adv}} \): linear advance full-int, Damp 0.1-1

\(B_2 \text{-RI-HgV} \): reduced-int Viscous, Hg Viscosity , Damp 0.1-1

\(B_2 \text{-RI-HgS} \): reduced-int Stiffness, , Hg Stiffness , Damp 0.1-1

\(B_2 \text{-D}_{0.05} \): \(B_2 \) model, Damp 0.05-0.05

\[*\text{ELFORM}=3 \]

\[*\text{ELFORM}=2 \]

\[*\text{ELFORM}=-2 \]

\[*\text{ELFORM}=1 \text{ } *\text{IHQ}=2 \]

\[*\text{ELFORM}=1 \text{ } *\text{IHQ}=4 \]
Accuracy of FSI Heart Valves Simulations

Von-Mises Stress

0 [MPa] 0.8
Accuracy of FSI Heart Valves Simulations

S_2-FSI$_1$

S_2-FSI$_2$

S_2-FSI$_3$

S_2-FSI$_{2q}$

GOA [mm2] vs. time [s]

Copyright by DYNAmore
Accuracy of FSI Heart Valves Simulations

- S_2: Belytschko-Lin-Tsay reduced-int Viscosity Hg Damp 1-5
- $S_2 - FSI_2$: 1 scale factor BC
- $S_2 - FSI_2 - Sf_2$: 2 scale factor BC
- $S_2 - FSI_2 - Sf_3$: 3 scale factor BC

![Graph showing GOA vs time for different conditions](image)
Accuracy of FSI Heart Valves Simulations

B_2: quadratic full-int Damp 0.1-1
B_2–FSI_2: 1 scale factor BCs
B_2–FSI_2-Sf_2: 2 scale factor BCs
B_2–FSI_2-Sf_3: 3 scale factor BCs

![Graph showing GOA [mm2] vs. time [s] for different simulations.](image-url)

Copyright by DYNAmore
Accuracy of FSI Heart Valves Simulations
Contents of the speech

Study on the Accuracy of FSI Heart Valves Simulations

Transcatheter Aortic Valve Implantation: an FSI study

Aim: Efficient methodological approach to perform FSI simulations of TAVI procedure
- Patient-specific domain
- Patient-specific BCs

Clinical data provided by Humanitas University (prof. Giulio Stefanini)
TAVI: an FSI study

✓ Mini-invasive procedure
✓ Intermediate- and high-risk patients

Smith et al., 2011

Copyright by DYNAmore
TAVI: an FSI study

giulia.luraghi@polimi.it
TAVI: an FSI study

DEVICE: FRAME

Pseudo-elastic material

*MAT_SHAPE_MEMORY

159,435 hexahedral reduce integrated elements

*ELFORM=1
TAVI: an FSI study

DEVICE: PERICARDIUM TISSUE

- 5,706 **quadrilateral shell elements**
 ELFORM=2

- Leaflets

- 32,388 **triangular membrane elements**
 ELFORM=5

Linear elastic
MAT_ELASTIC

- $E = 1 \, MPa$
- $\nu = 0.45$
- $\rho = 1100 \, kg/m^3$

Element formulation details:

giulia.luraghi@polimi.it
PATIENT-SPECIFIC DOMAIN: AORTA

CT images segmentation

35,640 hexahedral fully integrated elements

*ELFORM=2
Hyperelastic matrix with embedded fibres

*MAT_USER_DEFINED_MATERIAL

a: circumferential direction

b: longitudinal direction

\[W = C_{10} (I_1 - 3) + \frac{k_1}{2k_2} [e^{k_2 (I_4 - 3)^2} - 1] + \frac{k_3}{2k_4} [e^{k_4 (I_6 - 3)^2} - 1] + \frac{k}{2} (J - 1)^2 \]

- \(C_{10} = 5 \text{ kPa} \)
- \(\nu = 0.49 \)
- \(\rho = 1100 \text{ kg/m}^3 \)
- \(k_1 = 50.31 \text{ kPa} \)
- \(k_2 = 0.56 \)
- \(k_3 = 82.51 \text{ kPa} \)
- \(k_4 = 57.53 \)

Holzapfel-Gasser-Odgen model

Vande Geest et al., 2006
PATIENT-SPECIFIC DOMAIN: NATIVE VALVE

Commissure reference points

End-diastole configuration

Linear elastic

*MAT_ELASTIC

\[E = 4 \, MPa \]

\[\nu = 0.45 \]

\[\rho = 1100 \, kg/m^3 \]
TAVI: an FSI study

Linear elastic

MAT_ELASTIC

\(E = 12.6 \, MPa \)

\(\nu = 0.45 \)

\(\rho = 2000 \, kg/m^3 \)

PATIENT-SPECIFIC DOMAIN: CALCIFICATIONS

38,429 tetrahedral elements

*ELFORM=10
I STEP
Pre-TAVI Cardiac cycles

velocity [m/s] 0 4

1st Princ σ [MPa] 0 0.4

TAVI: an FSI study

giulia.luraghi@polimi.it
TAVI: an FSI study

II STEP
Implantation
TAVI: an FSI study

II STEP
Implantation
TAVI: an FSI study

II STEP
Implantation

Copyright by DYNAmore
TAVI: an FSI study

III STEP
Cardiac Cycle

- Aortic outlet
- Ventricular inlet

Newtonian fluid

*MAT_NULL

\[
\rho = 1060 \text{ kg/m}^3
\]

\[
\mu = 3.5 \text{ cP}
\]

113,216 hexahedral Eulerian one-point elements

*ELFORM=11

Copyright by DYNAmore
TAVI: an FSI study

Copyright by DYNAmore
Thank you for the attention

POLITECNICO
MILANO 1863

www.labsmech.polimi.it
26th Congress of the European Society of Biomechanics

MILANO

12-15 July 2020

Save the date!

Contacts: info.esb2020@mas-events.it

giulia.luraghi@polimi.it