x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

Ballistic Behaviour of UHMWPE Composite Material: Experimental Characterization and Numerical Simulation

This paper presents a comprehensive mechanical study of UHMWPE (Ultra High Molecular Weight Polyethylene) composite material under dynamic loadings. The aim of the study is to provide reliable experimental data for building and validation of the composite material model under impact. Three types of dynamic characterization tests have been conducted: in-plane tension, out-of-plane compression and out-of-plane shear. Moreover, impacts of spherical projectiles impact have been performed on larger specimen. Regarding the numerical simulation, an intermediate scale multi-layered model (between meso and macro scale levels) is proposed. The material response is modelled with a 3d elasto-orthotropic law coupled with fiber damage model. The modelling choice using *MAT_ORTHOTROPIC_SIMPLIFIED_DAMAGE is governed by a balance between reliability and computational cost. Material dynamic response is unconventional [1, 2]: it shows large deformation before failure and very low shear modulus and peeling strength. Numerical simulation has been used both during the design and the analysis of tests. Mechanical properties related to elastic moduli and failure strength have been measured. The ballistic numerical model is able to reproduce the main behaviors observed in the experiment. The study has highlighted the influence of temperature and fiber slipping in the impact response of the material.