Virtual Modeling of Forming Processes in Metal Packaging Industry
Nowadays the finite element method is technical standard in many industry sectors such as automotive manufacturing. Thus the material behaviour for steel applications in this field is extensively developed. In packaging industry, virtual approaches in process- and product development are more the exception. Instead, the cost-intensive and time-consuming trial-and-error method is commonly used to approach the limits of the material specific formability. Packaging steel is characterised by thicknesses between 0.1 to 0.49 mm and thyssenkrupp Packaging Steel offers strengths between 180 to 750 MPa. However, with tougher process limits, especially due to continuous thickness reduction, this method has its limitations. Speaking of material saving and optimisation simulation tools are gaining increasingly importance. In contrast to the automotive industry, established approaches for material characterisation do not exist and not all norms cover that low thickness range for sheet materials. The following work gives an indication of current possibilities for material characterisation of thin steel sheet. A completed validation ensures process and product designing with available material models.
Moldovan_thyssenkrupp_Steel.pdf
— 904.3 KB