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1 Introduction 

1.1 Motivation 

In automotive production, each automobile has approximately 7,000 to 12,000 spot welds along with 
other kinds of connections. The position of the spot weld with respect to the flange and the distance 
between the spot welds as well as various other parameters usually vary for each part combination 
(spot weld design). If these properties are known, they can be used for automatic generation of spot 
welds during the design phase of the product development which is otherwise a cumbersome manual 
process. The spot weld design to be determined by the engineer depends on many factors (input 
parameters) such as loads and forces that might be applied to the structure, material combination, 
geometry of the parts, connection technology and its process parameters. Some of these parameters 
such as material combination and geometry of the parts are predefined by the designer or are results 
of the circumstances such as loads and forces applied at the connection. The remaining parameters 
such as connection technology, process parameters, spot weld distances and flange distance have to 
be chosen by the engineer. On the basis of existing designs and with help of machine learning 
techniques it may be possible to predict the spot weld design parameters like spot weld distance and 
flange distance. Within this work existing spot-weld designs are extracted from a vast amount of FEM 
simulation input data available in the Simulation Data Management (SDM) system LoCo of SCALE 
GmbH and applied as the basis for training and benchmarking new methods for estimating spot weld 
parameters. 

1.2 Objective 

In this work, the distances between spot welds are estimated for spot weld design using machine 
learning approaches. For a machine learning approach, the first step is to collect relevant data 
required to predict the desired outcome. Within this work, the desired outcome is the spot weld design 
parameter of distance between the spot welds. In order to predict the desired outcome, we make use 
of simulation data used for crash analysis. From the simulation data for crash analysis, we extract the 
geometry of the parts and also the spot weld designs. From the data of already developed car models, 
we can build a model which should be able to provide a good initial estimate for distance between spot 
welds. With this model the design engineer has a good initial estimate of distance between spot welds 
for different part combinations and hence the number of design iterations required to reach the 
optimum values decreases. 

2 Mathematical basics 

This chapter presents the mathematical concepts used in this work in a brief manner to provide basic 
understanding to the reader. The subsections cover the basics of Artificial Neural Networks (ANN’s) 
and deep learning architectures. 
 

2.1 Artificial neural networks 

Basic explanations of Artificial Neural Networks (ANNs), on which this subsection is based, can be 
found in [1,2,3]. The formation of ANNs is an attempt to mathematically model the performance and 
intuitive capabilities of the human brain. The functionality of the human brain is essentially based on 
the interaction between the brain’s highly cross-linked nerve cells called natural neurons. The 
communication within a natural neural network takes place via signals. A neuron serves for receiving, 
processing and passing on incoming signals. The signals received from neighboring nerve cells are 
summed in the neuron and if this simulation exceeds a particular threshold value, then further signal is 
activated and transmitted to the adjoining neurons. 
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This basic structure is imitated by ANNs. The ANNs are then used to realize complex mappings of 
input variables on output variables. ANNs mainly consist of cross-linked computational nodes or 
artificial neurons and communication takes place via numerical values. An artificial neuron receives 
numerical values from neighboring neurons (input neurons), which are combined to form a weighted 
sum. This determined sum is then compared with a threshold value (bias) and used as the argument 
for so called activation functions. The activation function yields a value (output signal) which is an 
input signal for further connected artificial neurons. An important type of artificial neural network is the 
multilayer perceptron. The artificial neurons are arranged in layers. Starting from an input layer, 
numerical values are transferred or propagated to an output layer via one or more hidden layers. The 
output layer provides the result for the corresponding input data. The input and output data are usually 
real numbers. 

2.2 Convolutional neural networks 

Convolutional networks [4], also known as convolutional neural networks, or CNN’s, are a specialized 
kind of artificial neural network for processing data that have a known grid like topology. Examples of 
data on which CNN’s can be employed include time series data, which can be thought of as 1-D taking 
samples at regular time intervals, and image data which can be thought of as a 2-d grid of pixels. The 
name “convolutional neural networks” indicates that the network employs a mathematical operation 
called convolution. Convolutional neural networks are simply neural networks that use convolution in 
place of general matrix multiplication in at least one of its layer. Research into convolutional network 
architecture proceeds so rapidly that we have a new best architecture for a given benchmark 
announced every few months. Hence it is impractical to describe the best architecture. However, all 
the architectures have mainly been composed of the building blocks described in this section. A typical 
layer of a convolutional network consists of three stages as shown in Figure (1). In the first step, a 
layer performs several convolutions in parallel to produce a set of linear activation’s. In the second 
step, individual linear activation is run through a nonlinear activation function, mostly the rectified 
linear activation function. This step is sometimes called the detector layer. In the third step, we use a 
pooling function to modify the output of the layer further. 

 
 

Fig.1: Components of typical convolutional neural network layer 

2.3 Barycentric coordinates 

In geometry, the barycentric coordinate system is a coordinate system in which the location of a point 
of a simplex (a triangle, tetrahedron, etc.) is specified as the center of mass, or barycenter, of usually 
unequal masses placed at its vertices. The system was introduced in 1827 by August Ferdinand 

Möbius [5]. Consider a set of points nPPP ,,, 10 K   and consider the set of all affine combinations taken 

from these points, i.e., all points P  can be written as 

nnPPP   L1100  (1) 
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for some  

110  n L  (2) 

Then this set of points forms an affine space, and the coordinates ),,,( 10 n K are called the 

barycentric coordinates of the points of the space [6]. These coordinates system is frequently useful 
and extensively used in working with triangles. This barycentric parameterization is exactly the 
parameterization that is usually used in our case for generating 3D geometric data.  
 
In context of this work, we will make use of barycentric coordinates to generate points in a triangle. 

Consider three points 321 ,, PPP  in the plane and 321 ,,   are scalars such that 1321   , 

then the point P  defined by  

332211 PPPP    (3) 

is a point on the plane of the triangle formed by 321 ,, PPP . This point is within the triangle 321 PPP  if  

1,,0 321    (4) 

If any of the ’s is less than zero or greater than one, then the point P  is outside the triangle. If any of 

the ’s is zero then P  is on one of the lines joining the vertices of the triangle. 

 
In this work, we would utilize the concept of Barycentric coordinates to generate points inside 

elements of a part. In order to achieve this we would need to sample combinations of 321 ,,    so 

that we can generate points inside elements that are uniformly distributed. In order to do, we used the 
concept of Latin Hypercube sampling. 
 

3 Machine learning approaches for classification of geometric data 

3.1 Theoretical aspects of 3D geometric data 

The raw 3D data that are captured by different methods come in forms that vary in both, the structure 
and properties. This section presents comprehensive information on different representations of 3D 
data by categorizing them into two main families: 
 
Euclidean-structured data 
 

Certain 3D representations have an underlying Euclidean-structure where the properties of the grid-
structured are preserved such as having a global parameterization and a common system of 
coordinates. The main 3D representations that fall under this category are: 

- descriptors 
- 3D data projections 
- RGB-D data 
- volumetric data and 
- multiview data 

 
Non-Euclidean data 

 

Another type of 3D data representations is the non-Euclidean data. This type of data representations 
suffers from the absence of global parameterization and the non-existence of a common system of 
coordinates or vector space structures [7], which makes processing of such data representations a 
challenging task. Considerable efforts are directed towards learning from such data and applying 
machine learning techniques on it. The main type of non-Euclidean data is point clouds, 3D meshes 
and graphs. Usually processing such data types happens on a global scale to learn the whole 3D 
object’s feature which is convenient for complex tasks such as recognition and correspondence. 

3.2 Deep learning on 3D data 

3D data has multiple popular representations as described briefly in Section (3.1), leading to various 
approaches for learning. In this section we will briefly discuss some of the significant machine learning 
approaches applied to them. 
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- Volumetric CNNs: [8,9,10] are the pioneers applying 3D convolutional neural networks on voxelized
shapes. Volumetric representation is constrained by its resolution due to data sparsity and
computation cost of 3D convolution. FPNN [11] and Vote3D [12] has proposed methods to deal
with the sparsity problem; however, it’s challenging for them to process very large point clouds.

- Multi-view CNNs: [10, 13] have tried to render 3D shapes into 2D images and then apply 2D
convolutional networks to classify them. This approach has achieved dominating performance on
shape classification and retrieval tasks due to the fact that image CNN’s are well engineered for
classification tasks [14]. However the question of how many views are required to model the 3D
shapes is still open.

- Spectral CNNs: Some of the latest approaches [15, 16] use spectral CNNs on meshes. However,
these methods are currently constrained on manifold meshes such as organics objects and it’s not
obvious how to extend them to non-isometric shapes.

- Feature-based DNNs: [17, 18] extracts traditional shape features from 3D data and converts it into
a vector. Then they use a fully connected network to classify the shape. This approach is
constrained by the representation power of the features extracted.

3.3 PointNet 

In this work, we explore deep learning architectures capable of reasoning about 3D geometric data of 
point clouds. Point clouds are simple and unified structures that avoid the combinatorial irregularities 
and complexities of meshes and are thus easier to learn from. The network named PointNet [19], 
provides a unified architecture for applications ranging from object classification, part segmentation, to 
scene parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong 
performance on par or even better than state of the art. In this section we will discuss about the 
approach of using this deep learning architecture for geometry classification. 

PointNet is a unified architecture that directly takes point clouds as input and outputs either class 
labels for the entire input or per point segment/part labels for each point of the input. The basic 
architecture of the network is surprisingly simple as in the initial stages each point is processed 

identically and independently. A point cloud is represented as a set of 3D points },,1|{ niPi K

where each point iP is a vector of its ),,( zyx coordinate plus extra feature channels such as color,

normal etc. For simplicity and clarity, we only use the ),,( zyx  coordinates as our input. The network 

architecture, visualized in Figure (3), provides k  scores for all the k  candidate classes. The network 

has three key modules: the max pooling layer as a symmetric function to aggregate information from 
all the points, a local and global information combination structure, and two joint alignment networks 
that align both input points and point features. 

Fig.2: PointNet Architecture. The classification takes n points as input, applies input and feature 

transformations, and then aggregates point features by max pooling. The output is classification 

scores for k classes. 

The PointNet Architecture is implemented in TensorFlow, which is a open source machine learning 
frame work. In this work we used Python 2.7 to generate training data and Python 3.5 to train the 
PointNet architecture [20]. In order to speed up the training cycle we used a GPU (Graphics Processor 
Unit). TensorFlow allows us to use GPU’s to train machine learning algorithms with the aid of CUDA 
and cuDNN. CUDA is parallel computing platform and programming model invented by NVIDIA. It 
enables dramatic increase in computing performance by harnessing the power of GPU [21]. The 
NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU- accelerated library of primitives for 
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deep neural networks [22]. cuDNN provides highly tuned implementations for standard routines such 
as forward and back ward convolution, pooling, normalization, and activation layers. In this work we 
utilized CUDA 9.0 and cuDNN 7.0 for training purpose. 
 
The training data for PointNet was stored in HDF5 binary data format. Python package “h5py” was 
used to achieve this. HDF5 is a high-performance data management and storage suite. It supports n-
dimensional datasets and each element in the data set can itself be complex object. It comes with a 
set of integrated performance features that allow for access time and storage space optimizations. 
Also there is no limit on the number or size of data objects in the collection, giving great flexibility for 
big data. In this work we would be working with storing huge amount of geometric data as point clouds 
and hence HDF5 was chosen. 
 

3.4 Generation of 3D geometric data from FEM data 

In the previous section, a deep learning architecture is explained briefly which consumes point clouds 
and can be used to classify 3D geometry. In this section ideas and algorithms used to generate point 
clouds of 3D geometry for parts of car. Firstly we will have a look at how part geometry is expressed in 
FEM data. Then we will discuss methods to extract part geometry for individual parts and then using 
this part geometry data we will generate point clouds. The approaches presented were developed 
using libraries developed by SCALE GmbH. 

3.4.1 Extraction of geometry from FEM data 

In this subsection, we will discuss the ideas used to extract geometry data from FEM data. Nodes are 
the base for expressing geometric data in FEM data. Elements are formed with nodes and using 
elements we express part geometry. So when we want to extract geometric data, it indicates that we 
are extracting the coordinates of nodes for elements in a part. Now one can argue that we can just 
extract data of nodes present in a part and use it as point cloud of a part. This would be a simple 
process but we know that for feeding this point cloud into PointNet we would require the number of 
points in point cloud for each part to be the same. In Body in white (BIW) of a car not all parts are of 
same size and hence the number of nodes used to express the geometries of different parts will be 
obviously different. Hence it becomes necessary to extract data associated with elements that make 
up the parts and then use this data to generate points on surface of the parts according to our need. In 
this work we will only encounter with planar shell elements and thus the further discussions on 
elements will consider only the properties of shell elements. 
 
SCALE GmbH has developed a python library called femparser with which one could parse the 
include decks of FEM data and extract geometric data. The output of femparser is a python object 
which can be used to extract the geometric data of individual parts using combination of part numbers, 
elements ID’s and node ID’s. The extraction algorithm is presented in Algorithm (1). The output is 
stored in JSON format files for the ease of reading the outputs and for further processing steps (i.e. 
generation of point clouds) 
 
Algorithm 1 Part geometry extraction 
Input: FEM include file of car  
Apply femparser → mesh (python object) 
procedure 1. Extract all part id’s 

for part in mesh do 
     extract part id’s 
end for 

end procedure 
procedure 2. Extract geometry of each part 

for id in parts id’s do 
     Extract element id from mesh 
     for element id do 
          extract nodal coordinates from mesh 
     end for 
end for 

end procedure 
Output: Part JSON files 
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3.4.2 Generation of point clouds 

In the previous subsection, we extracted the geometric data for individual parts and saved in JSON 
format. In this subsection we will discuss the approaches and algorithms used to generate point 
clouds for parts which will be used to train the PointNet. We have the coordinates of shell and 
triangular elements which make up the parts. To generate the point cloud for the complete geometry 
of the part we would have to generate points on the surface of elements. It is necessary to have a 
roughly equal distribution of points on the surface of the part so that concentration of points in certain 
regions does not affect the quality of results which we would obtain in further sections. We also have 
to take into consideration the fact that the number of elements which describe a part are not all equal. 
Also the size of parts varies according to their function. So we need to develop methods to generate 
point clouds which have points uniformly distributed across the part surface and capture the complete 
geometric information. In this work, two step approach is used. First we select elements so that we 
can capture the complete geometric information and then we triangulate the elements to generate 
points on surface using the concept of barycentric coordinates 
 
Element Selection 
 

First we have to decide the number of point’s pn  to be generated in the point cloud. Once we know 

how many points to generate, we can employ different approaches to select elements, on the surface 
of which points will be generated. The simplest approach would be to generate one point, in random 
position, per element. Even though it sounds logical, it fails to generate equal number of points for 
different parts because they are not defined by the same number of elements. The next approach is 

called the naive random selection technique, in which we can select randomly pn  elements and 

generate one point, in a random position, inside the corresponding element. This approach looks fairly 
simple and would provide us a different point clouds for same part. The problem with this approach is 
that we cannot guarantee a fairly equal distribution of points over the complete part since elements are 

chosen randomly. Also when the number of points pn  is greater than the number of elements 

available for point generation, some elements can be chosen multiple times and this would lead to 
concentration of points at certain areas which are not under our control. In certain cases this would 
also lead to loss of geometric information. 
 
In order to improve the sampling of elements, we could use the area of element as a parameter. Using 
area of element as a parameter we can estimate the significance of an element. When the number of 

elements is greater than pn , we would want to generate more points in elements with larger area. 

With this we can also mitigate the problem of loss of geometric information when the number of points 

pn  is less than number of elements in a part. In this work, algorithms were developed considering the 

above mentioned aspects. The areas of elements were used as a parameter to select the significant 
elements and weights were generated to estimate the number of points to be generated within the 

element using Equation (5) where iA  is the area of the 
thi element and n  is the number of elements 

which defines the part. 

pn

i

i

i
i n

A

A
w 


1

 (5) 

 
Point generation 
 
Now that we know the number of points to generate on surface of each element of a part, the next 
step is to discuss the method used for generating point inside the element. In Section 2, we discussed 
the concept of barycentric coordinates and Latin hyper cube sampling technique. These concepts will 
be used for generating points on the surface of elements of the parts. The concept of barycentric 
coordinates can be applied directly to triangular elements, but in our case we also have rectangular 
elements. The easiest way to generate point for rectangular elements would be triangulate them and 
then use the concept of barycentric coordinates to generate points on their surface. This method is 
employed in this work for generating points on surface for rectangular elements. Figure (3) shows the 
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examples of point clouds of some of the parts of 2010 Toyota Yaris model which is detailed Finite 
Element Model available in public domain [23]. 
 

 
(a) B-pillar    (b) side panel 

Fig.3: Point clouds of parts of 2010 Toyota Yaris model 

 

3.5 Part identification of car model using PointNet 

3.5.1 Toyota Yaris Model 

In this subsection we will try to classify all the parts present in BIW of the TOYOTA YARIS model 
(Figure 4). 250 different parts were identified and extracted from the FEM model. We have not 
combined mirrored parts i.e. part with identical geometry on left and right side of the car. It is 
necessary for us to know if PointNet is able to identify them with respect to their positions. The 

PointNet was trained on Nvidia GeForce GTX 750 Ti for pn = 1024 with the following input parameters 

for the architecture 
- batch size = 10 

- learning rate = 0.001 

- momentum = 0.9 

- optimizer = ADAM 

- number of samples in training set = 10, 000 

- number of samples in test set = 2500 

- number of epochs = 300 

 

Fig.4: BIW of Toyota Yaris Model 
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Figure (5) shows the performance plots of PointNet when trained for 250 parts of the Yaris model. The 

training time for 300 epochs is ∼ 30 hours. PointNet was able to achieve 88% training accuracy. The 
trained model was then used to predict the class labels for unseen sample of point cloud for 250 parts. 
The model was able to predict 237 class labels correctly for 250 parts. With these results it becomes 
evident that 95% of part labels are predicted accurately by PointNet for the Yaris model. It is also 
interesting to note that the model can accurately differentiate similar geometries located on either side 
of axis of symmetry of the car. The only downside here is we had only one version for each part. It 
would be interesting to see the performance of PointNet when we have different versions of same 
part. In order to do so we would require information of different versions of same part. 
 

 

Fig.5: Performance of PointNet for Toyota Yaris Model 

 

3.5.2 AUDI model 

The Simulation Data Management System LoCo provided an example of AUDI model where we had 
the opportunity to test the performance of PointNet when different versions of same parts exist. LoCo 
had information of a FEM model of an AUDI car for a whole development cycle of roughly 5 years. 
From this data we used 2 include files to check if some parts have different versions and we found 13 
parts with different geometries. The model consisted of 350 parts and PointNet was trained with the 

following input parameters for the architecture for pn  = 1024. 

- batch size = 10 

- learning rate = 0.001 

- momentum = 0.9 

- optimizer = ADAM 

- number of samples in training set = 17, 500 

- number of samples in test set = 5000 

- number of epochs = 25 

Figure (6) shows the performance plots of PointNet for the AUDI model. PointNet was able to achieve 

80% training accuracy and the training time was ∼ 48 hours. On evaluation of the trained model with 
new set of point clouds, the model was able to identify 339 out of 350 parts correctly. This means that 
the trained model predicted 96% of the part labels accurately. These results are quite promising. 
 
The trained model was then used to predict the part label for new versions of parts used for training 
the model. Figure (7) shows an example of part version where the part has some changes. The model 
was trained to identify the geometry shown in Figure (7a). The trained model was used predict the part 
label of a version of the same part where the part has a difference as shown in Figure (7b). In reality 
the model has not seen this new version in its training data but the trained model is able to predict the 
correct part label. One could argue that the sampling methods used to generate the point clouds 
would not have captured such a small change and thus for the trained model it doesn’t make any 
difference. In reality this would not be the case as the PointNet uses overall geometry and the position 
of the part also as information for predicting class label. The trained model was also able to predict 
accurate class labels for remaining 11 parts with versions. With this example we could see that the 
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trained network is able to predict correct class labels even when the part geometry changes but still 
maintains positional similarity and some geometrical similarity to the part used for training the model. 
 

 

Fig.6: Performance of PointNet on AUDI model 

 

 
(a) Training geometry      (b) New version 

Fig.7: Examples of part versions 

3.6 Part combination identification using PointNet 

This section presents the investigations conducted to identify various part combinations of the AUDI 
model. Using the ideas presented in Section 4.1, we identified 873 part combinations in AUDI model 
connected using spot weld. We want to investigate if we can extend the PointNet model to consume 
point cloud of part combinations and provide an accurate identification of the part combination. The 
basic idea is to give each part combination a unique label and evaluate if the architecture is able to 
provide accurate prediction of class label for all the part combinations. In this case also the position of 
the part combination is important geometric information for identification of the part combination. 
 

The PointNet architecture was trained for pn = 1024 with the following input parameters: 

- batch size = 10 
- learning rate = 0.001 
- momentum = 0.9 
- optimizer = ADAM 
- number of samples in training set = 43, 650 
- number of samples in test set = 5000 
- number of epochs = 300 

 
The performance plots are show in Figure (8). The evaluation accuracy is just 60% i.e., the trained 
network is able to predict only 524 part combination labels correctly. This kind of performance is not 
useful for our further works. On inspection of predicted class label for part combinations, the trained 
model is unable to differentiate part combinations when one part in the combination is significantly 
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larger in size than the other part. This leads to masking of the smaller geometry by the bigger 
geometry which PointNet is not able to distinguish. 

 

Fig.8: Performance of PointNet on part combinations of AUDI model 

  

4 Machine learning approaches for estimation of spot weld design 

4.1 Spot weld design parameter 

The spot weld design, determined by the design engineer depends on 
many factors, i.e., input parameters like loads and forces that might be 
applied to the structure, material combination and geometry of the parts, 
the connection technology and its process parameters. Our focus is 
mainly on parameters like position of the spot weld with respect to the 
flange and the distance between the spot welds. Both these parameters 
usually vary for each part combination. In this section we will describe the 
methods use to calculate these parameter of distance between spot weld 
from FEM model. 
 
Figure (10) shows an example of b-pillar of a car with spot weld design. 
The spot weld design obtained for this example is a final result of 
numerous design and engineering iterations. The design varies with 
respect to materials used and the sheet thickness of the part. As an 
engineer our target would be to use machine learning for prediction of 
this spot weld design without the effort and cost of numerous engineering 
simulations. As this is a “first of its kind” work, initially we would be 
working towards estimation of minimum distance between spot welds so 
that we a have a good starting design which would need to go through 
minimum number of design iterations. In doing so we would be at least 
saving a significant amount of cost and computational efforts required to 
reach optimum spot weld design. 
 
Consider we have n  spot weld points for a part combination. Algorithm (2) presents the method 

employed to estimate sd  for a part combination. There exist many methods to find the closest point 

for a chosen point from a given set of points. In this work we employed a linear search solution, in 
which for a given point we computed the Euclidean distance to all other points and the closest point is 
the one which is at the shortest distance to the given point.  

Fig. 9: B - pillar 
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Algorithm 2 Calculate sd for a part combination 

Input: nPP ,,1 K
 

for ni ,,1 K  do 

     Find closest point 
c

iP  for iP  

     Calculate Euclidean distance between 
c

iP  and iP  

end for 

Output: 
n

d
d

n

i

c

i

s

  1           

           
 

4.2 Estimation of minimum distance between spot welds 

4.2.1 Classification based approach 

Classification based approach considers the use of PointNet to estimate minimum distance between 
spot welds. In Section 3.6 we discussed the idea of using PointNet to identify part combinations and 
results obtained were poor. So instead of using PointNet to identify parts, we would try to generate 

class labels for sd and train the PointNet to identify these class labels for part combinations.  

In previous geometry identification experiments, we labeled each part combination with a unique label. 
However in this experiment we label the part combinations according to a criterion, which their 

corresponding sd  value satisfies. The basic idea is to use classifier to predict values for sd  based on 

part combinations. This approach was an attempt to use the geometry as an input to predict the 

parameter sd . Table (1) shows the labeling criteria for part combinations based on sd . 

 

Criteria (mm) label 

0sd  0 

20  sd  1 

42  sd  2 

M M 

10098  sd  51 

100sd  52 

Table 1: Labeling criteria for classification based approach 

The PointNet was trained with the newly labeled training data of part combinations for n points = 1024 
with the following parameters: 

- batch size = 10 
- learning rate = 0.001 
- momentum = 0.9 
- optimizer = ADAM 
- number of samples in training set = 52, 380 
- number of samples in test set = 873 
- number of epochs = 200 

 
From the performance plots in Figure (10), we can see that the evaluation accuracy of the model 
reached nearly 90% during training. The trained model was evaluated using a new set of point cloud 
for each part combination and the prediction accuracy was 86%. The trained model was able to 
predict the class labels of 758 part combinations correctly. The 115 wrong predictions by the trained 
model were analyzed. For 56 part combinations the predicted class label was less than the actual 
class label and for 59 class labels the predictions were greater than actual class label. 
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Fig.10: Performance of PointNet for classification based approach 

 

4.2.2 Prediction based approach 

The basic idea of this approach was to use the identification capability of PointNet to identify the parts, 
and then use another neural network to estimate spot weld parameters. The approach is outlined in 
Figure (11). Here we first use PointNet to identify the parts from their point clouds and then use the 
part identification to predict spot weld parameters. PointNet is able to identify 96% part labels of AUDI 
model accurately. So in this approach we try to build a model which consumes part labels for two parts 

and predicts spot weld parameter sd . 

 

Fig.11: Prediction based approach 

In this work we utilized a feed forward neural network with two hidden layers. The parameter 
prediction model is a non linear model and we would require at least two hidden layers to have 
meaningful results. The parameter prediction model was implemented using TensorFlow. The 
important aspect in this model was data preparation and the model architecture. 
 
In order to train the spot weld parameter predictor model, a training data set was generated from the 

AUDI model. The part labels and the spot weld parameter sd  were normalized in the range [0, 1] for 

training the feed forward neural network. Since we did not have a bench marked architecture for this 
type of problem, many architecture were experimented upon and only the architecture which provided 
meaningful results has been presented in this work. A feed forward neural network with 150 neurons 
in the first hidden layer and 50 neurons in the second hidden layer was trained to predict the spot weld 
parameter d s and the results obtained are outlined in this work. Back propagation algorithm was used 
to train the model and gradient descent optimization was utilized with Mean Squared Error as the cost 
function. The model was trained with the following parameters: 

- batch size = 10 
- learning rate = 0.1 
- number of samples in training set = 846 
- number of epochs = 500, 000 

 
Figure (12) shows error v/s epochs plot during model training. The trained model was then used to 
predict spot weld parameter for the AUDI model.  
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Fig.12: Training spot weld parameter predictor model 

 
We calculated the deviation of the predicted values by the trained model so that we can have an 

estimate of the overall performance of the model. The deviation ed  was estimated using Eq. (6) 

sse ddd  Predicted Actual   (6) 

Table (2) shows the performance of the trained model. The performance accuracy is calculated as the 

percentage of number of part combinations for which the ed  value satisfies the mentioned deviation 

criteria. 

Deviation in mm Performance accuracy 

0ed  30.02 % 

2ed  65.85 % 

5ed  80.73 % 

10ed  86.00% 

Table 2: Performance of spot weld predictor model 

4.2.3 Comparison of approaches 

In order to evaluate the performance of the approaches mentioned in previous subsections, a 

comparison study was performed. The methodologies used to predict spot weld parameter sd  are 

different for classification based approach and prediction based approach. Classification based 

approach directly consumes the point cloud of part combinations and provides a prediction of sd  

within an interval of width 2 mm. Prediction based approach consumes point cloud of individual part in 

a part combination and provides a numeric estimation for sd . In order to evaluate the performance of 

both approaches we calculate the deviation of predicted value of sd . We calculate the deviation ed  

for both approaches differently. ed  for classification based approach is estimated using Eq. (7) 

  size Interval* Actual PredictedtionClassifica

LLe ccd   (7) 

where Lc is the class label and interval size is the difference between upper limit and lower limit of the 

criteria defining the class labels. For prediction based approach, we estimate ed  using Eq. (6). During 

evaluation of performance for prediction based approach, we also factor in the fact that identification of 
PointNet for all parts of AUDI model is not 100%. We identified the wrongly labeled parts and 

propagated this error in identification to the final prediction of sd  . The results obtained are visualized 

in Figure (14). 
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(a) Classification based approach     (b) Prediction based approach 

Fig.13: Comparison of approaches 

In Figure (14), the results displayed are percentage of total number of part combinations analyzed. 
From the results, we can see that classification based approach provides better estimation for larger 
number of part combinations as compared to prediction based approach. But classification based 
approach doesn’t provide us the possibility to include parameters like sheet metal thickness or 
material properties in prediction of spot weld parameters. Prediction based approach provides good 
results with the possibility of extending the model to include the parameters mentioned above in order 
to have more realistic results. 
 
Classification based approach and prediction based approach have their own strengths and 
shortcomings. In classification based approach, we are directly making use of geometric information of 
the parts to predict spot weld parameters whereas in prediction based approach, the prediction of spot 
weld parameter has no relation to geometric information. Since this work is first of its kind, we are 
looking for methods which can incorporate more input parameters for predicting spot weld design, 
thereby increasing the credibility of prediction, and thus Prediction based approach looks promising. 
 
In future works, the performance of prediction based approach can be improved by experimenting with 
different input parameters of neural network architecture. We can also conduct experiments on 
different architectures which can provide better performance when we consider more input parameters 
for prediction of spot weld design. 
 

5 Future works 

In this work, we presented the idea to identify parts of car model using a machine learning model 
directly from the geometric data and then use this information to predict spot weld design parameters 
for part combinations. In future work, we would want to expand this idea to use information of spot 
weld design in existing car models and then predict spot weld design parameters for a newly designed 
car model and also develop methods to generate spot weld designs automatically using the predicted 
parameters. This would mean that, the model would have to first identify an unseen part and then 
predict the spot weld parameters for this new design based on information from previous designs in 
older car models or other car models. This would have a considerable impact in reducing the product 
development cost and time. 
 

6 Conclusion 

In this work, we have developed and defined methods to extract significant input parameters of 
existing 3D geometry from FEM data. The extraction of significant parameters was completed with aid 
the library femparser and Python scripts. We also defined methods to generate point clouds of 
individual geometries from significant input parameters of existing 3D geometry. The identification of 
individual part using point clouds was achieved using the deep learning architecture called PointNet. 
The results of this classification problem were analyzed and we also tried to reason for wrong 
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predictions of classification problem. Due to the complexity of modeling parts in FEM, for some parts 
extraction of individual geometry was not feasible and this has contributed to minor errors in 
identification problem. In further works, we should be able to solve this problem. 
 
In order to estimate parameters for spot weld design, we first extracted significant input parameter of 
minimum distance between the spot welds for existing FEM data. This process was also achieved with 
aid of femparser and python scripts. In this work, we have outlined two different approaches which 
were used to estimate spot weld parameter. Evaluation of performances of these two approaches was 
conducted and their results are also compared. 
 
Classification based approach dealt with the idea of directly using geometric data to predict 
parameters. It involved the transformation of prediction problem into a classification problem for 
PointNet. Prediction based approach used PointNet first to identify the parts from their geometries and 
then used this information to provide a prediction for spot weld parameter using a separate neural 
network. It was found out that, in order to improve the credibility of estimation of parameters for spot 
weld design, Prediction based approach provided suitable base for further research. 
 
With this work, we are able to provide credible results for identification of parts using point cloud of 
parts and PointNet. We also have outlined approaches with which we estimated minimum distance 
between spot welds for part combinations. These approaches can further be developed for estimation 
of further parameters of spot weld design. 
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