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1 Introduction 

Ships and offshore structures operating in areas such as the Arctic have to be designed to withstand 
ice induced loads, e.g. from ice floe impact. This is mostly done with empirical methods, which have 
several drawbacks, e.g. they only give upper estimates of global loads. Numerical simulations of ice 
interaction are a desirable remedy, but their accuracy is currently limited if the material model doesn’t 
account for fracture processes. One approach is to use an elastic bulk material model along with the 
cohesive zone method (CZM) to model all inelastic deformation, i.e. fracture. Here, this approach is 
applied to simulate tensile splitting tests. The focus is on parameter identification and numerical 
instabilities for fine discretizations. 
To be more specific, ice-loads are significant for the design of maritime structures operating in areas 
with at least seasonal ice coverage. Brittle ice structure interaction (ISI) is dominated by fracture in the 
form of multiple interacting cracks and approximately elastic bulk behavior. However, modeling fracture 
and the verification of such models remains a challenge, particularly for ice. Often, fracture is not 
modeled, [1, 2], or elements that reach failure are simply deleted [3, 4] which lacks physical explanation. 
Detailed models do exist, e.g. [5, 6], but have only been applied to uniaxial simulations or don’t capture 
behavior after initial failure.  
One reason for shortcomings of fracture models is the lack of suitable verification experiments. The 
majority of experimental data is from compression experiments [7]. However, fracture is usually not 
initiated under pure compression or hydrostatic stress states. Rather, cracks occur as a result of tensile 
and shear stresses, which can originate from global compression stress, e.g. through wing cracks [8]. 
Before tackling a complex fracture process such as wing cracks, fracture models should be verified with 
straightforward tensile and shear stress states. For such stress states, current options for experimental 
verification are mostly uniaxial tensile and single crack beam tests, see e.g. [9–11]. Other experiments 
with biaxial stress states, such as tensile splitting tests, are desirable but rarely done, see e.g. [12].  
With respect to the fracture model, the CZM is applied. The method is straightforward to implement in 
existing finite element models and a good compromise between precision and efficiency. Drawbacks of 
the CZM are various known numerical issues, [9, 13], which get worse for finer meshes. Further 
challenges are the identification of suitable material parameters and the model calibration and 
verification, respectively.  
Regarding the numerical issues, bounds for parameters and their interdependency are shown for 
different meshes. Aspects such as the cohesive element stiffness, traction and damage process are 

discussed in view of element size and physics based constraints. 
Regarding the verification, tensile splitting- or Brazilian tests (TST) 
are suggested as an alternative to uniaxial tensile tests. This 
method is common for the characterization of brittle materials such 
as rocks. A solid disc is diametrically compressed. In theory, in the 
center, the material undergoes biaxial tension to failure. The sample 
preparation and conducting of tests is simple. TSTs are not suitable 
for determining the tensile strength of ice [14]. Nevertheless, the 
TST represents a valuable possibility to verify tension-dominated 
failure through experimental observations and corresponding 
numerical analysis. 
In a nutshell, two key issues are subject of this paper:  
(i) the modeling of fracture in ice with the CZM and resulting 
numerical instabilities, particularly for fine meshes and  
(ii) the comparison of fracture models to experiments. 
 

Figure 1 - Tensile splitting test in ice 
with vertical crack 
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2 Application of the cohesive zone model to fracture in ice 

2.1 Tensile splitting tests 

Tensile tests for brittle materials are challenging. An alternative is the tensile splitting test or Brazilian 
test. Tensile splitting is a standardized test method for the characterization of materials such as rock 
[15] or concrete [16]. The specimen production and test conduction of the tensile splitting tests are easier 
in comparison to conventional tensile tests. However, previous investigations have shown that the test 
is only conditionally suitable for determining the tensile strength of ice [14]. As a benchmark for the CZM 
simulations shown here, tensile splitting tests with fine grained fresh water ice were carried out. The 
diameter of the disc specimens is 99.4 mm and the thickness is 20 mm. Eleven experiments with a 
nominal crosshead speed of 10 mm/s and plane steel plates were chosen as a compromise between 
computing time and the lowest possible dynamic effects. The mean force of this group is 1.3 kN with a 
standard deviation of 0.22 kN. All experiments were recorded with a high-speed camera. After a short 
loading time, microcracks formed in the contact area between the ice and the loading plates. Brittle 
failure was observed for all samples. A vertical crack grew through the sample, see also Figure 1. 
 

2.2 Preliminaries 

2.2.1 The bulk model 

The approach to modeling brittle ice behavior combines a bulk material model with the cohesive zone 
method (CZM) as described in [17]. Here, a simple isotropic elastic bulk material model 
MAT_PLASTIC_KINEMATIC was used, as MAT_ELASTIC is only valid for small finite strains. A 

homogeneous bulk response is implicitly assumed. To the authors’ knowledge, there exists no general 
criterion yet regarding the number of grains necessary to homogenize three dimensional bulk behavior 
of ice. Numerically, it was shown in two dimensions that 230 grains are required for homogeneous elastic 
behavior of polycrystalline ice, which corresponds to 15 times the average grain diameter [18]. This 
agrees with recommendations for experiments [19]. The grain diameter of the ice used in the tensile 
splitting tests was ~2 mm. Therefore the required minimum element size would be 30 mm, which is too 

big for a model (and specimen) size with a diameter of 100 mm. Hence the assumption of a 
homogeneous response cannot be upheld. This simplification probably affects the results, but the 
magnitude of the effect is not known at present [5].  

2.2.2 The cohesive zone method 

To apply the CZM, the parameters for the traction separation law (TSL) have to be identified and several 
numerical issues have to be addressed. The following parameters are needed: the cohesive element 
stiffness, i.e. initial slope of the curve, the maximum traction and the energy release rate.  
Usually, the TSL parameters are not known in advance and have to be back calculated by comparing 
simulation and experiment [20–22]. For biaxial stress states, back calculation is not straightforward, 
since other aspects might influence the outcome. More research is needed. 
Therefore, parameters from previous work based on a simple comparison to a uniaxial tensile test were 
adopted, see [9] and [10], respectively. The uniaxial tensile test was used as a reference because the 
ice in the tensile splitting experiment is expected to fail under tension.  
The energy release rate (ERR) was chosen as 𝐺 = 4 Jm−2. This value might be too high, because the 
ERR possibly decreases with decreasing specimen size [19, 23] and the specimens here are smaller 
than for the reference experiment. Yet conclusions regarding the ERR on small scales <̃ 1m are 
premature and this value is considered sufficiently realistic.  
Next, a maximum traction value has to be determined. Generally, (global) tensile strength increases for 
smaller specimens in bending [24]. For true uniaxial tensile tests data is not sufficient to reach 
conclusions, e.g. [25], but the same size effect is expected. The tractions used are given in Table 1.  
The choice of initial stiffness, i.e. initial slope of the TSL, is guided by numerical considerations rather 
than physics. Using cohesive elements with initial stiffness introduces artificial compliance to the model. 
This is also influenced by element size [13]. There are different approaches to tackle this issue. A 
common solution is using a high initial stiffness. In explicit solvers this approach is limited because the 
time step is influenced by the stiffness. A good compromise can be found with an approach based on 
minimal one-dimensional models [9]. 
Lastly, the length of the cohesive zone has to be estimated. This can be done with various formulas, 
typically given for plane stress or plane strain conditions. The calculated cohesive zone length may vary 
significantly for different formulas. Here, it was estimated for brittle fracture and plane stress according 
to [26, 27].  
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This length is compared to the average element length. There is no universally agreed minimum number 
of elements in the cohesive zone. Suggestions range from 2 to 10 elements [26, 28]. In general, a finer 
discretization is desirable and also often needed to satisfy the requirement of more than two elements 
in the cohesive zone. 
Once the necessary TSL parameters are calculated, the homogeneous elastic behavior of bulk and 
cohesive elements requires double-checking. The reason is that the elastic parameters are estimated 
with 1-D ‘back-of-the-envelope’ formulas that neglect 3-D mesh characteristics. Lower bounds for the 
homogenized, overall Young’s modulus and Poisson’s ratio are calculated following the work by Blal et 
al. They employ a 3-D matrix-inclusion composite to derive theoretical criteria on cohesive parameters 
[29]. First, the ratio of homogenized modulus 𝐸hom to the desired target modulus of ice 𝐸target is 

calculated as  
𝐸hom

𝐸target

=
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This approach includes the cohesive normal and tangential stiffnesses 𝐸N and 𝐸T and the ratio of 
cohesive element area to bulk element volume  

𝑍 =
𝐴coh

𝑉bulk

5 

The ratio 𝐸hom 𝐸target⁄  should be as close to one as possible. Crucially, the 𝑍 ratio increases for finer 

meshes and lowers 𝜉E which in turn makes it difficult to achieve this. 

Secondly, the ratio of homogenized, overall Poisson’s ratio 𝜈hom to the desired target Poisson’s ratio 

𝜈target is calculated as  

𝜈hom

𝜈target

=
𝐸b𝑍 (−1 + 2
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𝐸T
) + 15𝐸N𝜈b

𝐸b𝑍 (3 + 4
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) 𝜈𝑀 + 15𝐸N𝜈b
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Overall, the aim is to achieve ratios ≥ 0.95. These ratios and parameters are only valid for the TSL up 
to the point of damage initiation or crack propagation, respectively.  
Besides the TSL parameters, the mass of the cohesive elements is an issue. Although the cohesive 
elements are virtually two-dimensional, they are assigned either (i) a thickness of one distance unit (in 
our case 1 m) in LS-Dyna and a density per volume or (ii) a density per area. Hence the cohesive 
elements add mass to the model. This is corrected by distributing the total mass between the cohesive 
and bulk elements, e.g. [9]. 
Finally, it is emphasized that it is not straightforward to establish a consistent set of parameters for the 
CZM due to several numerical as well as physics based restrictions. Upper and lower boundaries of 
parameters are shown in Figure 2. Regarding the ERR 𝐺, a high value results in ductile behavior 
whereas a value too low would be unphysical, since cracks have to release energy. The cohesive 
element stiffnesses should be as high as possible to decrease artificial compliance and meet target 
elastic ratios (Eqs. 3 and 6). However, very high values lead to a small time step size and numerical 
instabilities. The normal traction 𝜎 needs to be chosen such that simulations can represent tensile tests. 
The ratio 𝜏 𝜎⁄  is not known for ice, but the ratio for rock as another highly brittle material is about two [5]. 
Lastly, if the element size is too big, the requirement of 2-3 elements in the cohesive zone is not met, 
whereas for very small element sizes time step size decreases. As mentioned, small elements increase 
the 𝑍 ratio which makes it harder to fulfill the requirements on the 𝐸, 𝜈 ratios (Eqs. 3 and 6). Balancing 
and discussing these interdependencies is a key issue in this paper. 
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2.2.3 Contact and element formulation 

For all parts the *ERODING_SINGLE_SURFACE contact was used. This way the different parts of the 

fractured specimen can still come into contact, as is the case in the experiments. Unfortunately, it is not 
possible yet to use tetrahedron elements to model 3-D fracture. The reason is that an 
*ERODING_SINGLE_SURFACE contact is required to prevent contact between bulk elements prior to 

failure of the cohesive elements. If this is not enabled, only a fraction of the stress between two bulk 
elements actually reaches the cohesive element. Therefore, structured hexahedron meshes were used 
in all simulations. 
 

3 Results 

3.1 Validation 

3.1.1 Elasticity 

Before verifying the simulation against the experiment, the key assumptions and elastic parameters 
have to be validated. For this, the results for the models with and without cohesive elements were 
compared for a bent contact surface. Ideally, the elastic response in terms of force and stress fields are 
the same. Figure 3 indicates the force between steel plates and specimen for different element sizes 𝐿S 
and cohesive/no cohesive models. For the case “no CZM hex 0.0025”, the contact algorithm caused 
initial force oscillations that faded after about 20 ms. For the finer meshes, the slope of the force curve 

increased after about 45 ms which is probably owed to the better discretization and the bent contact 
geometry. Nevertheless, overall the curves match.  
 

 
Figure 4 indicates the x-stress over x-coordinate, i.e. the stress normal to the fracture path on a path 
parallel to that stress. Again, stresses are shown for different discretizations and cohesive/no cohesive. 
The coarse mesh does not accurately resolve the stress, but overall the CZM / no CZM stresses match. 

Figure 2 - Numerical and physical boundaries of parameters 
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Figure 3 – Simulated force over time between steel plate and ice specimen for different discretizations and 
modesl with and without cohesive elements inserted 
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Remarkably, the green curve (hex 0.0025, with CZM) is not as smooth as expected. Apparently the 
cohesive elements slightly distort the stress field for the fine mesh. All in all, the elastic behavior for 
models with and without cohesive elements is almost identical.  
 

3.1.2 Numerical instability 

The models with cohesive elements were prone to numerical instabilities, particularly the model with the 
fine mesh. In many cases, all cohesive elements were suddenly deleted which resulted in an explosion-
like model behavior. This was often preceded by irregular fracture patterns. The key issues identified 
were: (i) the required high initial stiffness of the cohesive elements, (ii) the ratio of normal to tangential 
traction, (iii) a high contact stiffness, and (vi) possibly the damage process.  
Regarding (i), it is known that a high initial stiffness causes numerical problems. Decreasing the stiffness 
helps. Yet the fine mesh prescribes lower bounds for the stiffness in order to not violate (Eqs. 3 and 6). 
The ratio of normal to tangential traction, issue (ii), was also critical. A relatively high tangential traction 
or neglecting failure due to tangential separation partially alleviated the instabilities. With respect to the 
contact stiffness (iii), a fine mesh decreases the time step which in turn increases the contact stiffness. 
This can lead to a high contact stiffness, which probably causes problems similar to the high initial 
stiffness of the cohesive elements.  
Lastly, issue (vi), the damage process implemented in *MAT_COHESIVE_MIXED_MODE causes 

softening. Depending on the fracture path and stress field this may result in undamaged and very stiff 
elements which are in the neighborhood of elements with almost zero stiffness. Consequently, it was 
only possible to run models with *MAT_COHESIVE_ELASTIC which does not include any damage 

process and an unphysically low ratio of normal to tangential traction. In other words, cohesive element 
failure due to tangential stress was not possible.  
In Table 1, mesh related parameters are shown for different element lengths. The 𝑍-ratio decreases 
with smaller elements whereas the cohesive element stiffness increases. For structured meshes this 
increase is linear. The ratios for the elastic moduli should be above 0.95, but are considered sufficient. 

Furthermore, it is recommended that 𝜉𝐸 ≥ 20, which is not reached [29]. Nonetheless, this does not 

negatively impact the coarser mesh models. However, there appears to be a threshold for 𝑍 or 𝜉𝐸 values 
over which numerical instabilities are likely to occur. 
In short, the small element size caused several issues due to decrease in time step and stiffness of the 
cohesive element and contact, respectively.  
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Table 1 - Parameters of the cohesive method 

Description or equation Symbol Unit Values 

Element length 𝐿𝑠 m 0.0025 0.005 0.01 

Density cohesive elements 𝜌𝐶𝑍𝑀 kg/m³ 0.366 0.75 1.5 

𝑍-ratio 𝑍 m^-1 1230 579 253 

Eq.4 𝜉𝐸 m 13.2 14.1 16.1 

𝐸-ratio 𝐸ℎ𝑜𝑚 𝐸𝑡⁄  - 0.93 0.93 0.94 

𝜈-ratio 𝜈ℎ𝑜𝑚 𝜈𝑡⁄  - 0.96 0.96 0.97 

Corrected bulk modulus 𝐸𝑏𝑐 Pa 1E10 1E10 1E10 

Poisson’s ratio 𝜈𝑏  - 0.33 0.33 0.33 

Cohesive element stiffness 𝐸𝐶𝑍𝑀 Pa/m 3.60E+13 1.80E+13 9.00E+12 

Maximum traction mode I 𝑇 Pa 3.60E6 2.25E6 1.15E6 

 

3.2 Verification 

For verification, three models with different mesh sizes were simulated. The fracture in all simulations 
initiated in the contact area between steel and ice specimen. Subsequently the crack ran vertically 
through the specimen. The same behavior is observed in experiments, see Figure 1 and Figure 5. 
Initially, microcracks appeared in the contact areas. With further compression one or more distinct 
cracks ran through the specimen. Clearly, the structured mesh prescribes the fracture path. 
Nonetheless, for reasons stated above, see Section 2.2.3, no tetrahedron meshes can currently be 
used.   
 

 
Figure 5 – Fracture paths for models with different meshes  

 
  

hex 0.01  hex 0.005  hex 0.0025 

 
Regarding peak forces levels, a strong dependency on the peak traction is observed (as expected). 
According to this result, the peak traction was adjusted for each mesh to achieve the measured forces. 
The resulting forces and used peak tractions for the MAT_COHESIVE_ELASTIC are shown in Figure 6. 

In addition, the forces were strongly dependent on the contact algorithm used. The 
ERODING_SINGLE_SURFACE SOFT=2 formulation with SBOPT=5 DEPTH=35 showed the best 

behavior. A coefficient of friction between ice and ice of 0.1 and between steel and ice of 0.03 is 
assumed. As the element size increases, the required peak traction of the CZM element decreases 
significantly.  
The force curves of all simulations are shown in Figure 6. All simulations showed a brittle failure 
behavior. The overall stiffness of the finer meshes was less compared to the mesh with an element 
length of 0.01 m. During loading, the test specimen oscillates between the two load plates in the 
simulation. The load curve of the mesh with an element edge length of 0.0025 m changed from a force 
of approximately 1 kN because horizontal elements eroded in the contact area, which in turn lead to 
oscillations due to the contact algorithm.  
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Figure 6 – Peak traction of cohesive elements (left y-axis) 
and peak force (right y-axis) in the simulations 

Figure 7 – Force between steel plates and specimen 
over time for different discretizations  

 

4 Discussion and conclusion 

The CZM in combination with an elastic bulk material is suitable for modeling of brittle behavior of ice. 
The validation and verification of the tensile splitting test simulations was mostly sucessful. A specific 
parameter set has to be identified for every model in dependence of the mesh. Regarding elastic 
parameters, this can be achieved with the approach given in Section 2.2. However, the calibration of 
other parameters such as the traction requires several simulation runs and remains to be time 
consuming.  
Numerical stability is an issue. With the current approach, only using *MAT_COHESIVE_ELASTIC 

instead of *MAT_COHESIVE_MIXED_MODE yielded consistent results. The contact algorithm also 

proved to significantly influence the results. Such numerical issues also render automated calibration 
difficult.  
Next, it is currently not possible to meet all model and parameter requirements indicated in Figure 2. 
Particularly the requirement for 2-3 elements in the process zone cannot be met with the current 
approach due to numerical instabilities for a fine mesh. On the other hand, coarse meshes appear to 
‘swallow’ peak stresses which could be one reason for the requirement of higher tractions for coarser 
meshes.  
Besides the numerical aspects it is concluded that tensile splitting tests are generally suited for the 
verification of fracture models for ice. This is true both from the numerical as well as the experimental 
perspective. 
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