

New Features for Metal Forming in LS-DYNA

■ X. Zhu (LSTC)
■ L. Zhang (LSTC)
■ B. Hochholdinger (DYNAmore Swiss GmbH)

- David Schröder (DYNAmore Swiss GmbH)

Outline

- Definition of material hardening behavior

■ Best-fit for comparison of geometrical deviations
■ Improvements for One-Step simulations
■ Uniform mesh refinement of selected region

pre

post
solver
adaptivity
■ Mesh fusion

- Adaptivity and Trimming for sandwich sheets

■ Miscellaneous

misc

Definition of material hardening behavior

Definition of hardening behavior

■ Currently different material models offer different options to define yield curve

HLCID	Load curve ID expressing effective yield stress as a function of effective plastic strain in uniaxial tension.

HR	Hardening rule: EQ.1.0: linear (default), EQ.2.0: exnonential(Swift)
HARD	Hardening law:
	EQ.1.0: Exponential hardening: $\sigma_{y}=k\left(\varepsilon_{0}+\varepsilon_{p}\right)^{n}$
	EQ.2.0: Voce hardening: $\sigma_{y}=a-b e^{-c \varepsilon_{p}}$
	EQ.3.0: Hansel hardening
	EQ.4.0: Gosh hardening: $\sigma_{y}=k\left(\varepsilon_{0}+\varepsilon_{p}\right)^{n}-p$
	EQ.5.0: Hocket-Sherby hardening: $\sigma_{y}=a-b e^{-c \varepsilon_{p}^{g}}$
	LT.O.0: Absolute value defines load curve ID or table ID with yield stress as functions of plastic strain and in the latter case also plastic strain rate.

New keyword: *DEFINE_CURVE_STRESS

■ Defines yield curve based on commonly used hardening laws.
\square Weighted combinations of hardening laws are possible.
■ *DEFINE_CURVE_STRESS can be used by any material model that accepts a curve to define the hardening behavior.

Define second card with the same LCID if ITYPE $=11$.

Card 1	1	2	3	4	5	6	7	8
Variable	LCID	ITYPE	P1	P2	P3	P4	P5	
Type	I	I	F	F	F	F	F	
Default	none	none	none	ITYPE 1: 0.001	none	none	none	

New keyword: *DEFINE_CURVE_STRESS

Implemented hardening laws:

- Swift Power law

$$
\sigma=K\left(\varepsilon_{0}+\varepsilon_{p}\right)^{n}
$$

■ Voce law

$$
\sigma=\sigma_{0}+R_{s a t}\left(1.0-e^{-\zeta \cdot \varepsilon_{p}}\right)
$$

- Alt. Voce law

$$
\sigma=A-B e^{-C \cdot \varepsilon_{p}}
$$

■ Hockett-Sherby law $\sigma=A-B e^{-C \cdot \varepsilon_{p}{ }^{H}}$
■ Stoughton-Yoon law $\sigma=A-B e^{-C \cdot \varepsilon_{p}{ }^{m}}+D \cdot \varepsilon_{p}$
\square Weighted combination of Swift + Voce or Hockett-Sherby

New keyword: *DEFINE_CURVE_STRESS

■ Example: Weighted Combination of Swift Power Law + Voce

$$
\sigma=0.5 \cdot K\left(\varepsilon_{0}+\varepsilon_{p}\right)^{n}+0.5 \cdot\left(A-B e^{-C \varepsilon_{p}}\right)
$$

$K=350$
$\varepsilon_{0}=0.01$
$n=0.22$
$A=162$
$B=72$
$C=4.3$

Best-fit for comparison of geometrical deviations

*CONTROL_FORMING_BESTFIT

■ Comparison of geometries from simulation and scan of real part.

■ Rigidly moves a source (mesh) to the target (e.g. STL) so they maximally coincide:

- Source mesh: predicted springback shape (e.g. dynain file)
- Target mesh: scan data (e.g. stl file)
- Result file: bestfit.out (dynain file with shell thickness as normal deviations between the two parts)

■ Limitations:

- shell elements only
- double precision only.

■ Available now in LS-PrePost 4.3 in Metal Forming Application/eZ Setup.

LS-PrePost interface for *CONTROL_FORMING_BESTFIT

Example for *CONTROL_FORMING_BESTFIT

Improvements for One-Step solver

*CONTROL_FORMING_ONESTEP_OPTION

*CONTROL_FORMING_ONESTEP _TRIA

- activates original implementation from 2011
- all quadrilateral elements are internally split into 2 triangular elements

■ *CONTROL_FORMING_ONESTEP_QUAD

- quadrilateral elements with improved algorithm
- better results
- Improved calculation speed on multiple CPUs/Cores (SMP)

■ * CONTROL_FORMING_ONESTEP_QUAD2

- Further improved element formulation but slightly longer CPU times than option QUAD
- Better prediction of thinning and plastic strains
- New default

*CONTROL FORMING ONESTEP OPTION

TRIA

QUAD

7.200e-01 6.960e-01 6.720e-01 6.480e-01 6.240e-01 6.000e-01 5.760e-01 5.520e-01 $5.280 \mathrm{e}-01$ 5.040e-01 4.800e-01

	Number of	Calculation speed (D.P. SMP Rev.112720, 8 CPUs)		
		Option QUAD	Option QUAD2	
A hat shape part	71000	21.0 min	14.1 min	16.6 min
A upper dash panel	61700	24.5 min	11.5 min	17.2 min

Uniform mesh refinement of

selected region

*CONTROL_ADAPTIVE_CURVE

Card 1	1	2	3	4	5	6	7	8
Variable	IDSET	ITYPE	N	SMIN	ITRIOPT			
Type	I	I	I	F	I			

\square ITRIOPT $=0 \rightarrow$ Refine shell elements along a curve

*CONTROL_ADAPTIVE_CURVE

\square ITRIOPT $=1 \rightarrow$ Refine shell elements along and inside a curve loop

- Seed node has to be defined

Mesh fusion

Mesh fusion

■ Mesh fusion so far was available for SMP only
■ Now mesh fusion also is available for MPP
\square Fusion can be configured via *CONTROL_ADAPTIVE

Mesh fusion

Mesh fusion

Final number of shell elements = 2476

Final number of shell elements = 1000

Mesh fusion

effective plastic strain without fusion

effective plastic strain with mesh fusion

Mesh fusion

Min. Shell Thickness Difference

- Significant reduction in CPU cost
- No obvious difference in thinning and plastic strain prediction

Adaptivity and Trimming
 for sandwich sheets

Sandwich sheets

■ Sandwich: top and bottom steel sheets and a polymer core

\square Modeling of sandwich sheets:
■ Top and bottom steel sheets: shell elements
■ Polymer core: solid elements

polymer core steel sheet

Adaptivity for sandwich sheets

■ Option IFSAND=1 on *CONTROL_ADAPTIVE for adaptive refinement

- Mesh refinement only can happen in the plane of the sheet
\square No refinement in the thickness direction
■ One solid element is split into 4 solid elements
- Recent improvements:

■ Adaptivity so far was only possible for one solid element over thickness of core
■ Recently adaptivity was extended to multi-layer of solid elements
■ Works for both SMP and MPP

Adaptivity for sandwich sheets

-1

Adaptivity for sandwich sheets

Trimming of sandwich sheets

- 2D and 3D trimming of sandwich sheet and solids
- Definition is similar as for trimming of shell elements

■ Additional input to indicate solid normals: TDIR on *DEFINE_CURVE_TRIM_3D

Miscellaneous

Continuous result quantities

■ New option ICRQ on *CONTROL_SHELL

- Continuous treatment of thickness and plastic strain across element edges for shell element formulations 2, 4, and 16 with max. 9 integration points through the thickness
- Reduces alternating weak localizations sometimes observed in metal forming applications when shell elements get stretch-bended over small radii
- Similar to MAT_NONLOCAL

ICRQ=0
ICRQ=1
plastic strain

Miscellaneous

- Improvements to *CONTROL_FORMING_AUTOCHECK
- E.g. output rigid tool mesh in offset position

■ *BOUNDARY_SPC_SYMMETRY_PLANE_SET

- Possibility to define symmetry constraints for part set, e.g. tailor welded blanks

■ *CONTROL_FORMING_SHELL_TO_TSHELL

- Automatically change from shell to thick shell elements

■ New option *INTERFACE_SPRINGBACK_EXCLUDE to exclude selected portions from the generated dynain file

Thank you for your attention!

