

LSTC Livermore Software Technology Corp.

New Features for Metal Forming in LS-DYNA

- X. Zhu (LSTC)
- L. Zhang (LSTC)
- <u>B. Hochholdinger</u> (DYNAmore Swiss GmbH)
- David Schröder (DYNAmore Swiss GmbH)

Outline

- Definition of material hardening behavior
- Best-fit for comparison of geometrical deviations
- Improvements for One-Step simulations
- Uniform mesh refinement of selected region
- Mesh fusion
- Adaptivity and Trimming for sandwich sheets
- Miscellaneous

Definition of material hardening behavior

Definition of hardening behavior

Currently different material models offer different options to define yield curve

*MAT_037	HLCID	Load curve ID expressing effective yield stress as a function or effective plastic strain in uniaxial tension.				
*MAT_036	HR	Hardening rule: EQ.1.0: linear (default),				
*MAT_133	HARD	EQ.2.0: exponential (Swift) Hardening law: EQ.1.0: Exponential hardening: $\sigma_n = k(\varepsilon_0 + \varepsilon_n)^n$				
		EQ.2.0: Voce hardening: $\sigma_y = a - be^{-c\varepsilon_p}$ EQ.3.0: Hansel hardening				
		EQ.4.0: Gosh hardening: $\sigma_y = k(\varepsilon_0 + \varepsilon_p)^n - p$				
		LT.0.0: Absolute value defines load curve ID or table ID with yield stress as functions of plastic strain and in the latter case also plastic strain rate.				

New keyword: *DEFINE_CURVE_STRESS

- Defines yield curve based on commonly used hardening laws.
- Weighted combinations of hardening laws are possible.
- *DEFINE_CURVE_STRESS can be used by any material model that accepts a curve to define the hardening behavior.

Card 1	1	2	3	4	5	6	7	8
Variable	LCID	ITYPE	P1	P2	P3	P4	P5	
Туре	I	I	F	F	F	F	F	
Default	none	none	none	ITYPE 1: 0.001	none	none	none	

Define second card with the same LCID if ITYPE = 11.

New keyword: *DEFINE_CURVE_STRESS

Implemented hardening laws:

Swift Power law
$$\sigma = K(\varepsilon_0 + \varepsilon_p)^n$$

Voce law
$$\sigma = \sigma_0 + R_{sat} (1.0 - e^{-\zeta \cdot \varepsilon_p})$$

Alt. Voce law $\sigma = A - Be^{-C \cdot \varepsilon_p}$

Hockett-Sherby law
$$\sigma = A - Be^{-C \cdot \varepsilon_p^H}$$

Stoughton-Yoon law
$$\sigma = A - Be^{-C \cdot \varepsilon_p m} + D \cdot \varepsilon_p$$

Weighted combination of Swift + Voce or Hockett-Sherby

New keyword: *DEFINE_CURVE_STRESS

Example: Weighted Combination of Swift Power Law + Voce

$$\sigma = 0.5 \cdot K(\varepsilon_0 + \varepsilon_p)^n + 0.5 \cdot (A - Be^{-C\varepsilon_p})$$

11th European LS-DYNA Conference, 2017 – Salzburg, Austria

 $\mathbf{\cap}$

SWISS

Best-fit for comparison of geometrical deviations

*CONTROL_FORMING_BESTFIT

- Comparison of geometries from simulation and scan of real part.
- Rigidly moves a source (mesh) to the target (e.g. STL) so they maximally coincide:
 - Source mesh: predicted springback shape (e.g. dynain file)
 - Target mesh: scan data (e.g. stl file)
 - Result file: bestfit.out (dynain file with shell thickness as normal deviations between the two parts)
- Limitations:
 - shell elements only
 - double precision only.

Available now in LS-PrePost 4.3 in Metal Forming Application/eZ Setup.

LS-PrePost interface for *CONTROL_FORMING_BESTFIT

Improvements for One-Step solver

*CONTROL FORMING ONESTEP **OPTION**

*CONTROL FORMING ONESTEP **TRIA**

- activates original implementation from 2011
- all quadrilateral elements are internally split into 2 triangular elements

*CONTROL_FORMING_ONESTEP_QUAD

- quadrilateral elements with improved algorithm
- better results
- Improved calculation speed on multiple CPUs/Cores (SMP)

*CONTROL FORMING ONESTEP **QUAD2**

- Further improved element formulation but slightly longer CPU times than option QUAD
- Better prediction of thinning and plastic strains
- New default

*CONTROL FORMING ONESTEP **OPTION**

Number		Calculation speed (D.P. SMP Rev.112720, 8 CPUs)				
	of elements	Option TRIA Option QUAD C		Option QUAD2		
A hat shape part	71000	21.0 min	14.1 min	16.6 min		
A upper dash panel	61700	24.5 min	11.5 min	17.2 min		

LSTC Livermore Software Technology Corp.

Uniform mesh refinement of selected region

*CONTROL_ADAPTIVE_CURVE

Card 1	1	2	3	4	5	6	7	8
Variable	IDSET	ITYPE	Ν	SMIN	ITRIOPT			
Туре	I	I	I	F	I			

■ ITRIOPT=0 → Refine shell elements along a curve

*CONTROL_ADAPTIVE_CURVE

■ ITRIOPT=1 → Refine shell elements along and inside a curve loop

Seed node has to be defined

Mesh fusion

Mesh fusion

- Mesh fusion so far was available for SMP only
- Now mesh fusion also is available for MPP
- Fusion can be configured via *CONTROL_ADAPTIVE

Final number of shell elements = **2476**

Final number of shell elements = **1000**

Mesh fusion

Min. Shell Thickness Difference

Significant reduction in CPU cost

STC

ivermore Softwar echnology Corp.

No obvious difference in thinning and plastic strain prediction

40

Adaptivity and Trimming for sandwich sheets

Sandwich sheets

Sandwich: top and bottom steel sheets and a polymer core

Modeling of sandwich sheets:

- Top and bottom steel sheets: shell elements
- Polymer core: solid elements

Adaptivity for sandwich sheets

- Option IFSAND=1 on *CONTROL_ADAPTIVE for adaptive refinement
- Mesh refinement only can happen in the plane of the sheet
- No refinement in the thickness direction
- One solid element is split into 4 solid elements
- Recent improvements:
 - Adaptivity so far was only possible for one solid element over thickness of core
 - Recently adaptivity was extended to multi-layer of solid elements
- Works for both SMP and MPP

Adaptivity for sandwich sheets

Adaptivity for sandwich sheets

Trimming of sandwich sheets

 2D and 3D trimming of sandwich sheet and solids
 Definition is similar as for trimming of shell elements
 Additional input to indicate solid normals: TDIR on *DEFINE_CURVE_TRIM_3D

chnology Corp

Miscellaneous

Continuous result quantities

New option ICRQ on *CONTROL_SHELL

- Continuous treatment of thickness and plastic strain across element edges for shell element formulations 2, 4, and 16 with max. 9 integration points through the thickness
- Reduces alternating weak localizations sometimes observed in <u>metal forming</u> <u>applications</u> when shell elements get stretch-bended over small radii
- Similar to MAT_NONLOCAL

chnology Corp.

Miscellaneous

Improvements to ***CONTROL_FORMING_AUTOCHECK**

E.g. output rigid tool mesh in offset position

*BOUNDARY SPC SYMMETRY PLANE SET

- Possibility to define symmetry constraints for part set, e.g. tailor welded blanks
- *CONTROL FORMING SHELL TO TSHELL
 - Automatically change from shell to thick shell elements
- New option *INTERFACE_SPRINGBACK_EXCLUDE to exclude selected portions from the generated dynain file

Thank you for your attention!

